[Probabilidad-Estadistica-Seminario] Fwd: Charla sobre Clustering - M. Tepper - **lunes 20/11-16hs** (ATENCIÓN CAMBIO)
Ernesto Mordecki
mordecki en cmat.edu.uy
Lun Nov 13 13:43:03 -03 2017
Cambio de fecha!!
---------- Forwarded message ----------
From: Mauricio Delbracio <mdelbra en fing.edu.uy>
ATENCIÓN: La charla se mueve para el lunes 20/11 para evitar una
colisión con los festejos de los primeros 50 años del INCO.
"Clustering is semidefinitely not that hard", lunes 20/11 a las 16hs.
Sala de seminarios del Instituto de Física (7mo piso FING)
Favor reenviar (nuevamente).
m-
---------- Forwarded message ----------
Tenemos el agrado de tener de visita a Mariano Tepper, investigador
del grupo de neurociencia del Flatiron Institute (Simons Foundation) y
amigo de la casa.
Mariano dará una charla sobre su trabajo actual, que muchos de ustedes
(espero) encontrarán de interés.
"Clustering is semidefinitely not that hard", lunes 20/11 a las 16hs.
Sala de seminarios del Instituto de Física (7mo piso FING)
Abajo +información. Favor reenviar a interesados.
saludos,
mauricio
---
Title:
Clustering is semidefinitely not that hard
Abstract:
In recent years, semidefinite programs (SDP) have been the subject of
interesting research in the field of clustering. In many cases, these
convex programs deliver the same answers as non-convex alternatives
and come with a guarantee of optimality. In this talk, I will argue
that SDP-KM, a popular semidefinite relaxation of K-means, can learn
manifolds present in the data, something not possible with the
original K-means formulation. To build an intuitive understanding of
SDP-KM's manifold learning capabilities, I will present a theoretical
analysis on an idealized dataset. Additionally, SDP-KM even segregates
linearly non-separable manifolds. As generic SDP solvers are slow on
large datasets, I will also discuss the suitability of efficient
algorithms to SDP-KM. These features render SDP-KM a versatile and
interesting tool for manifold learning while remaining amenable to
theoretical analysis.
Bio:
Mariano Tepper is currently a member of the neuroscience group at the
Center for Computational Biology, Flatiron Institute. His research
focuses on image processing, computer vision, pattern recognition, and
machine learning. Previously, he was a research scientist at Duke
University. Prior to working at Duke, he was postdoctoral research
associate at the University of Minnesota. Tepper holds a Ph.D. and
licentiate degree in computer science from the Universidad de Buenos
Aires in Argentina and an M.S. in applied mathematics from the École
Normale Supérieure de Cachan in France.
--
Ernesto Mordecki
Facultad de Ciencias - Centro de Matematica
Igua 4225 - 11400 - Montevideo - Uruguay
Tel: (598 2) 525 25 22 interno 122.
Fax: (598 2) 522 06 53
http://www.cmat.edu.uy/~mordecki/
------------ próxima parte ------------
Se ha borrado un adjunto en formato HTML...
URL: <http://www.cmat.edu.uy/pipermail/seminario-probabilidad-estadistica/attachments/20171113/727dd8a9/attachment.html>
Más información sobre la lista de distribución seminario-probabilidad-estadistica