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Abstract We study the (Ahlfors regular) conformal dimension of the bound-
ary at infinity of Gromov hyperbolic groups which split over elementary
subgroups. If such a group is not virtually free, we show that the confor-
mal dimension is equal to the maximal value of the conformal dimension of
the vertex groups, or 1, whichever is greater, and we characterise when the
conformal dimension is attained. As a consequence, we are able to charac-
terise which Gromov hyperbolic groups (without 2-torsion) have conformal
dimension 1, answering a question of Bonk and Kleiner.
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1 Introduction
1.1 Overview

The conformal dimension of a metric space, introduced by Pansu, is the infi-
mal Hausdorff dimension of all the quasisymmetrically equivalent metrics on
the space. It is a natural quasisymmetric invariant, and is connected to the uni-
formisation problem of finding an optimal (‘“flattest’”) metric for a given space.
Since the boundary at infinity doc G of a Gromov hyperbolic group G carries
a canonically defined family of metrics that are pairwise quasisymmetric, the
conformal dimension of d,,G is a well-defined quasi-isometric invariant of
G. The initial motivation for the introduction of this invariant by Pansu in [35]
was in the study of the large scale geometry of negatively curved homoge-
neous spaces, for which the conformal dimension can be computed explicitly.
However, in general it is an invariant that is very hard to compute. Despite this
difficulty, it has found applications in other areas of geometric group theory
and dynamical systems. These include the work of Bonk and Kleiner on the
rigidity of quasi-Md&bius group actions [2]; the works of Bonk and Kleiner [3]
and Haissinsky [21] on Cannon’s conjecture and the boundary characterisation
of Kleinian groups; the works of Haissinsky and Pilgrim on the characterisa-
tion of rational maps among coarse expanding conformal dynamical systems
on the 2-sphere [23]; the works of Bourdon and Kleiner focussing on the rela-
tions between the £,-cohomology, the conformal dimension, combinatorial
modulus, and the Combinatorial Loewner Property [5,6]; and the works of
the second author on conformal dimension bounds for small cancellation and
random groups [31,32], as well as further connections to actions on L ,-spaces
[8,16]. We refer the reader to the survey [34] for the basic theory of conformal
dimension and its first applications.

In this paper we compute the conformal dimension of a hyperbolic group
that splits as a graph of groups with elementary edge groups in terms of the
conformal dimensions of the resulting vertex groups. Throughout the paper,
an elementary (sub)group is a group that is finite or 2-ended, i.e., virtually Z.
Unless otherwise indicated, by ‘conformal dimension’ we mean the now more
commonly studied Ahlfors regular conformal dimension, see Definition 3.1.

Theorem 1.1 Suppose G is a hyperbolic group, and we are given a graphs of
groups decomposition of G, with vertex groups {G;} and all edge groups are
elementary. Then if G is not virtually free,

Confdim 050G = max {{1} U {Confdim 05, G; : G; inﬁnite}}.

This theorem enables us to resolve a question of Bonk and Kleiner
[3, Question 6.1], characterising those hyperbolic groups which have con-
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Conformal dimension and splittings 797

formal dimension equal to one (under the mild assumption of no 2-torsion).
The conformal dimension of the boundary of a hyperbolic group is either
0 or one of a dense set of values in [1, c0), and the groups whose bound-
aries have conformal dimension O are exactly the virtually free groups (by
Stallings—Dunwoody, see e.g. [34, Theorem 3.4.6]). Bonk and Kleiner’s ques-
tion therefore asks for a classification of the next fundamental case: conformal
dimension 1. Additional motivation for their question comes from the problem
of understanding which hyperbolic groups attain their conformal dimension
(see Sect. 1.2): since Bonk—Kleiner had previously classified those hyper-
bolic groups attaining conformal dimension 1, one can view our answer to
their question as characterising those hyperbolic groups which have confor-
mal dimension 1, but do not attain it. In a different direction, as we discuss
below, our work here also gives new kinds of self-similar metric spaces having
conformal dimension 1.

Corollary 1.2 If G is a hyperbolic group with no 2-torsion and not virtually
free, then Confdim 050G = 1 if and only if G has a hierarchical decomposi-
tion over elementary edge groups so that each vertex group is elementary or
virtually Fuchsian.

Let us now consider these results in more detail. The case of Theorem 1.1
when all the edge groups are finite is well known in the field (a proof may be
found in the first author’s thesis [11, Theorem 6.2]).

Theorem 1.3 If G is an infinite hyperbolic group with a finite graph of groups
decomposition where the vertex groups are {G;} and the edge groups are finite,
then

Confdim 05oG = max{Confdim 0,,G; : G; infinite},

where max ) = 0.
In light of this result, Theorem 1.1 reduces to the following:

Theorem 1.4 Suppose G is a hyperbolic group with a graph of groups decom-
position of G with vertex groups {G;} and all edge groups 2-ended, then if G
is not virtually free,

Confdim 9o, G = max {{1} U {Confdim 800Gi}}.

Proof of Theorem 1.1 The lower bound for Confdim 94, G is immediate: if we
have Confdim d5cG < 1 then Confdim docG = 0 and G is virtually free (see
e.g. [34, Theorem 3.4.6]), thus Confdim d,G > 1. In addition, each G; is a
quasiconvex subgroup of G so each infinite G; has d G; is quasisymmetrically
embedded in 0, G, therefore Confdim d,o G > Confdim 05, G;.
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798 M. Carrasco, J. M. Mackay

For the upper bound, amalgamate all edges with infinite edge groups to get a
less refined graph of groups decomposition G, where the conformal dimension
of the new vertex groups has the bound from Theorem 1.4. Then as all edge
groups in G’ are finite, the upper bound follows from Theorem 1.3. O

Particular cases of Theorems 1.1 and 1.4 were known before. Keith and Kleiner
in unpublished work [25] and Carrasco [13] showed that if dooG has well
spread local cut points (“WS” for short), then do, G has conformal dimension
1. By saying d,,G has WS we mean that for some (any) fixed metric in the
family, for any § > 0 one can delete finitely many points from d,G so that
all remaining connected components have diameter at most §.

As Theorem 1.1 applies whether WS holds or not, we can complete the “if”
direction of Corollary 1.2 characterising which hyperbolic groups have con-
formal dimension one. The “only if”” direction of Corollary 1.2 follows from
work of the second author showing that hyperbolic groups with, for example,
Sierpifiski carpet or Menger sponge boundaries have conformal dimension
greater than one, and an accessibility result of Louder—Touikan [29].

Proof of Corollary 1.2 Suppose G admits a finite hierarchy of graph of groups
decompositions over finite and 2-ended subgroups, ending with vertex groups
that are elementary or virtually Fuchsian; such groups have conformal dimen-
sion at most 1. Since G is not virtually free we have Confdim d,oG > 1, and
by repeatedly applying Theorem 1.1 we have that Confdim d,cG < 1.

Now for the converse, suppose Confdim d,cG = 1. As G has no 2-torsion,
[29, Corollary 2.7] implies that we can find a finite hierarchy for G as follows:
by Stallings and Dunwoody we can split G maximally over finite edge groups
leaving finite or one-ended vertex groups, then take the JSJ decomposition of
the one-ended (hyperbolic) vertex groups, maximally splitting over 2-ended
subgroups, then repeat the Stallings—Dunwoody splitting for any vertex group
with more than one end, and so on, repeating finitely many times until all the
vertex groups remaining are either elementary, virtually Fuchsian groups, or
one-ended groups that do not split over a 2-ended subgroup.

Each vertex group is quasiconvex in the original group G as all splittings
were over elementary subgroups. The third case of one-ended, non-virtually
Fuchsian groups with no splittings over a virtually Z subgroup cannot arise,
as such groups have conformal dimension > 1 by [30, Corollary 1.3]. O

Remark 1.5 Corollary 1.2 holds also with the definition of conformal dimen-
sion as the infimal Hausdorff dimension of (not necessarily Ahlfors regular)
quasisymmetrically equivalent metrics; let us denote this by Confdimg . First,
if G admits such a hierarchy and is not virtually free, 1 < Confdimpg 050G <
Confdim 0,oG = 1. Second, as the lower bound > 1 from [30] works for
Confdimpg also, if Confdimpg docG = 1 then all vertex groups in the hierar-
chical decomposition must be elementary or virtually Fuchsian as desired.

@ Springer



Conformal dimension and splittings 799

Remark 1.6 The groups considered in Corollary 1.2, when torsion free, are
the groups Wise suggests might be the hyperbolic virtual limit groups [42,
Section 1.4].

1.2 Attainment of conformal dimension

It is natural to ask when the conformal dimension of a hyperbolic group is
attained, i.e. when 0 G is quasisymmetric to an Ahlfors Q-regular space with
O = Confdim 0,,G. When this is satisfied G often has rigidity properties, see
the results and discussion in [28].

Under the hypothesis of Corollary 1.2, Bonk and Kleiner have shown that if
a hyperbolic group G has Confdim d,G = 1 and this is attained, i.e. if dooc G
is quasisymmetric to an Ahlfors 1-regular space, then d,,G is a circle and G
is virtually Fuchsian [2, Theorem 1.1].

When we have a graph of groups as in Theorem 1.1, we can show the
following.

Theorem 1.7 Suppose G is a hyperbolic group, and we are given a graph
of groups decomposition of G with vertex groups {G;} and all edge groups
elementary. Then the conformal dimension of 000G is attained if and only if
either:

e Confdim 050G = 0 and G is 2-ended, or

e Confdim 050G = 1 and G is virtually cocompact Fuchsian, or

o G = G for some vertex group with 00 G; attaining its conformal dimen-
sion Confdim 0, G; > 1.

The main idea here is that if the conformal dimension Confdim 05, G is
attained, then any “porous” subset has strictly smaller conformal dimension.
Since, by Theorem 1.1, Confdim d,oG = Confdim d,,G; for some vertex
group G;, and G; is a quasiconvex subgroup of G, the limit set AG; cannot
be porous in do,G and one can conclude that G; must equal G.

1.3 Idea of proof and toy example

By work of Keith—Kleiner, Bourdon—Kleiner and the first author [5,12,25], the
(Ahlfors regular) conformal dimension of the boundary of a hyperbolic group
X = 050G is equal to the critical exponent of the combinatorial modulus of
the family of all curves in X of diameter at least &, for some fixed small §. Prior
to the works just cited, other authors who have used combinatorial modulus
to study conformal dimension include Pansu [35] and Keith-Laakso [26]; see
[12] for further discussion.

These notions are formally defined in Sect. 3, but we can illustrate the idea
here with a toy example. Consider the double G = 71 (S) *xz 71 (S) where S is a
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800 M. Carrasco, J. M. Mackay

Fig. 1 Some lifts in the
hyperbolic plane of the
filling curve abcd of the
surface group

(a,b,c,d | la,bllc,d] =1)

closed surface of genus 2, and Z corresponds to a closed geodesic curve y in S.
The boundary 0+, G is (speaking informally) the limit of a countable collection
of circles, corresponding to dxc71 (S), glued at pairs of points, corresponding
to ds0Z, in a tree-like fashion given by the Bass—Serre tree of the splitting.

The topological properties of the boundary depend on the type of
curve y chosen. If y is a simple closed curve, then Pansu observed that
Confdim d,,G = 1 by varying the hyperbolic structure on S to find CAT(—1)
model spaces for G with volume entropy arbitrarily close to that of the hyper-
bolic plane; see discussion in [3, Section 6] and [10, Theorem 1.1].

If y is not simple, but not filling, one cannot use this argument. Recall
that a curve y is filling if all connected components in S\y are topological
discs, see Fig. 1 for an example of a filling curve. However, the second author
observed that such boundaries still satisfy the WS property, with cut points
arising from limit points corresponding to an essential curve in S\y, and so
Confdim 05cG = 1 here also. For a complete characterisation of when d,c G
has WS, including this case, see the work of the first author [13, Theorem 1.3].

The case when y is filling remained unresolved, but now we can apply
Theorem 1.1 to find that Confdim 0,,G = 1.

To show how to prove this, we sketch the idea for a toy example which
models doo G. We build the space in stages, beginning by letting X be a circle
with length metric and of diameter 1, and fix two antipodal points x_, x+ € Xj.
Define X by taking X and gluing on at pairs of points on say 12 copies of
Xo scaled down by 1/3 spaced around X in an overlapping fashion. For each
n = 2,3,..., define X, in the following way: take a copy of S', and for
each j = 1,...,n glue on at pairs of points between 3/~! and 12 - 3/~!
copies of X, ; scaled down by 1/ 3/, spaced around S'. We assume that these
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Fig. 2 A toy model for the boundary of a surface group doubled along a filling curve

gluings are done in a self-similar way, so there is a natural limit space X of
this construction; see Fig. 2 for a partial illustration of how X3 is constructed.
In the figure, circles are coloured black, blue, red, green. While the circles
appear to overlap, a circle coloured blue, red or green meets no other circle of
the same colour, and exactly one circle of some preceding colour at exactly
one pair of points.

To show that Confdim X = 1, since Confdim X > dim;,, X = 1 is trivial,
it suffices to show that Confdim X < p for an arbitrary p > 1. Using the
machinery of Keith—Kleiner and Carrasco mentioned above, such a bound
follows from a combinatorial modulus estimate on X. Rather than considering
all curves in X of diameter > §, we simplify the argument here by considering
the family of all paths in X joining x_ to x4, which we call I".

For each n € N, let S, be the cover of X by sets of size 37" corresponding
to the copies of X of size 37" in X,,. A weight function p, : S, — (0, 00) is
admissible for I if for any y € T, the p,-length £, (y) satisfies

b ()= Y (A =L

AeS, yNAFED

Roughly speaking, a weight function describes a hoped for conformal defor-
mation where the desired diameters of the images of A € S, are the values of
pn(A), and admissibility ensures that the image doesn’t collapse down in size.
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802 M. Carrasco, J. M. Mackay

The p-volume Vol (py) of py is defined as

ay = Voly(pn) = ) pu(A)P.
AeS,

To achieve the bound Confdim X < p, we require a sequence (p,) of I'-
admissible weight functions so that a, = Vol,(p,) — 0 asn — oo.

We now define p, : S, — (0, 0o) and estimate a,, by induction. The first
step is easy: Sp = {Ao} is a cover of X( by a single open set, and we let
po - So — (0, 00), po(Ag) = 1, which is admissible and has ag := 1.

Now for the inductive step: assume that suitable p; have been defined for
alli =0,...,n—1. Theidea at step n is that we send the geometric sequence
of annuli A7 := B(x_,37"/2)\B(x_,370*D/2) fori =0,...,n—1,toan
arithmetic sequence of annuli each of size 1/2n, and likewise for the annuli
A;r centred at x.. This will define an admissible weight function; see Fig. 3
for an illustration.

Now, we describe p,, in more detail (though not with an explicit formula),
and we estimate its p-volume a,. Foreachi = 0,...,n — 1, and each j =
i+1,...,n,theannuli A;", A;r contain in total < C3_i/3_j =C3/ copies
of X, j, which we endow with weights using p,,— j; here C > 11is a constant.
As we want these to have diameters totalling > 1/n in the image, we apply a
scaling factor of 1/(3/~n) to these copies, which scales a,—; by 1/(3/ 7 n)P.
Thus, summing these up and using geometric series bounds, we have

n—1 n
i Ap—i
CZ Z 3/ ) (3j—i,;)p

an =
i=0 j=i+1
n j—l1
_ 2223—(1'—1')(;:—1)%_].
npb
j=1i=0
pn C’
< — ap—;i < max{ag, ..., y—
_np,lnj_l’lp_l {0 9111}7
j:

for some constant C’ > 1. This inequality implies that for n large, the sequence
(a,) is nonincreasing, hence (a,) is bounded, hence the inequality again
implies that a, — 0 as n — oo. The proof is complete.
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Conformal dimension and splittings 803

The general argument in the paper is more involved in several ways, but
has the same key idea of deforming geometric sequences of annuli into arith-
metic sequences at its foundation. Many additional complications are laid on
by incorporating deformations of d-,G; which nearly achieve the conformal
dimension of the boundaries of each space d,,G;, carefully checking admissi-
bility (for all curves of given diameter, not just those joining two points), and
setting up a suitable induction for the volume bounds.

1.4 Outline of paper

In Sect. 2 we describe the metric properties of limit sets in hyperbolic groups
with quasiconvex splittings. In Sects. 3—7 we prove Theorem 1.4: Sect. 3
reduces the theorem to a statement about combinatorial modulus, and in Sect. 4
a sequence of weight functions is defined. The weight functions are shown to
have maximum values going to zero, to be admissible, and to have bounded
volume in Sects. 5, 6, and 7 respectively. Finally, in Sect. 8 we consider attain-
ment of conformal dimension and prove Theorem 1.7.

1.5 Notation

We write A < Bif A < CB for some constant C > 0, and A < Bif A < B
and B < A. We may write A <¢ B or A <¢ B to indicate which C. We also
write A =~ B if |A — B| < C for some constant C > 0. Throughout the paper,
C,C',C",...,Cy,Cy,...refer to constants only depending on the relevant
data; sometimes we make the dependence clear by writing C = C(«, 8, ...) and
soon.For A, B € R, we write AV B := max{A, B}and AA B := min{A, B}.

2 Graph of groups decompositions and boundaries

In this section we present useful facts about boundaries and quasiconvex split-
tings of hyperbolic groups that will be used later. For references on graph
of groups and Bass—Serre theory, see Serre [36], Scott—Wall [39] and Drutu—
Kapovich [15].

2.1 Boundaries of quasiconvex splittings

An abstract (oriented) graph G consists of two sets, the vertices VG and the
edges EG, with an initial vertexmap (-)_ : EG — VG, e — e_ and aterminal
vertex map (-)4 : EG — VG, e — e4.

Suppose G acts on a tree 7 without inversions on edges, minimally (i.e.
there is no proper invariant sub-tree of 7°), and with the quotient graph G\T
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804 M. Carrasco, J. M. Mackay

finite. Any such action corresponds to a graph of groups decomposition G
for G where the underlying graph is G\T, for each vertex i € V(G\T) the
vertex group is a copy of the stabilizer G, for some v € VT in the orbit
corresponding to i, for each edge k € E(G\T) the edge group is a copy of
the stabilizer G, for some e € ET in the orbit corresponding to k, and the
injective homomorphisms from edge groups into vertex groups are induced by
the inclusions of stabilizers G, — G._, G, — G,,. Wecall T the Bass—Serre
tree for the graph of groups decomposition G.

As all the stabilizers in an orbit are conjugate, for v € VT we can define
iy € VG, g, € G sothat G, = vaivgv_l, and for ¢ € ET we can define
ke € EG,g. € G sothat G, = g,Gy g, "

We now build a model space Z for G. Foreachi € VG let M; be a presenta-
tion complex for G;, so M; is a 2-dimensional cell complex with w1 (M;) = G;.
Likewise foreach k € EG let My be a presentation complex for G;. The homo-
morphisms from edge groups to vertex groups are induced by continuous maps
fio i My — My_, fi, : My — My, fork € EG. The graph of spaces M is
built from the collection {M;};cyg U {My x [—1, 1]}xeeg where we glue each
My x {£1} to My, by the map (z, £1) — fi, (z). By Bass—Serre theory, the
fundamental group 71 (M) equals G.

Define a length metric on M which induces a geodesic metric on the uni-
versal cover Z := M. This space Z is a tree of spaces with a copy Z, of M;,

foreachv € VT and a copy Z, x [—1, 1] off/Tk:x [—1,1]foreache € ET,

where the subsetf/fk: x {%1} is glued into the corresponding vertex spaces.
The action G ~ Z = M preserves this tree-of-spaces structure, and so if we
collapse each vertex space Z, to a point and each edge space Z, x [—1, 1] to
an edge we recover our original tree 7 and action G ~ T.

Fix a base vertex vg € T and a basepoint 0 € Z so that Z — T maps
o to vg. As G acts geometrically on Z the orbit map G — G - o induces a
quasi-isometry G — Z. This quasi-isometry coarsely maps each left coset
gvGi,, v € VT to Z,, and likewise coarsely maps each g.Gy,, e € ET, to
Ze x [—1, 1.

In our case G is a hyperbolic group, and so Z is hyperbolic also. We fix
a visual metric d on X := 0o,Z with visual parameter ¢ > 0, i.e. d(-, ) <
e~¢C1o where (-|-), denotes the Gromov product with basepoint 0. We may
rescale to assume diam X = 1.

For a subgroup H of G, let A(H) C X be the limit set of H, i.e. the
accumulation points of H - 0 in X = 0 Z. For v € VT we denote the limit
set of the stabilizer G, by A, = A(G,), and likewise for e € ET we let
Ae = A(Gy).

In each case considered here, the edge groups are uniformly quasicon-
vex as they are either finite or two-ended. Therefore the vertex groups are
uniformly quasiconvex also (see e.g. [9, Proposition 1.2]), and so hyper-
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Conformal dimension and splittings 805

bolic, and consequently for each v € VT the quasi-isometric embedding
gvGi, — Z found by restricting the orbit map induces a quasisymmetry
0008vGi, = gv0cGi, = Ay C 00 Z.

Lemma 2.1 (cf. [9, Proposition 1.3], [24, Lemma 10]) If G is a hyperbolic
group with a graph of groups decomposition G over quasiconvex edge groups
with Bass—Serre tree T, with G acting geometrically on the model space Z,
and X = 000 Z with a visual metric, then every x € X corresponds to exactly
one of the following:

e a point of 0o T, with a unique x for eacht € 95T, or
e a point of A, for some e € ET, or
e a point of Ay for some unique v € VT (but not in any A.).

Proof Consider a geodesic ray y from o in Z representing x € X.

For an edge ¢ € ET let Z,_, be the component of Z\(Z, x {0}) not
containing o. Let us say that y essentially crosses the edge space corresponding
toe € ET,orjust y essentially crosses e, if for every C > 0, y has unbounded
intersection with Z, . \N¢c(Z, x {0}).

If y essentially crosses e € ET, then it essentially crosses every edge
between vg and e in 7. Moreover if a simple path from vy to some vertex v in
T can be extended by either ¢’ or ¢” in ET, then by quasiconvexity y cannot
essentially cross both ¢’ and e”. Therefore the collection of edges in T which
y essentially crosses gives a simple path from vy, either (i) infinite or (ii) finite.
Let us call this path p: by definition it depends only on the point x € X and
not the choice of y.

In case (i), the path y determines a unique point in 9, 7. We claim that there
is a bijection between the set of x € X represented by y with  unbounded,
and points in 07T . First, given any point ¢ € 0.7, by an Arzela—Ascoli
argument one can choose a geodesic ray y in Z so that y limits to ¢.

Second, if y, @ are geodesic rays and y = & is unbounded, then y and «
must represent the same point in X: suppose not, then (y|a), < co. Choose
a large constant R and an edge e € ET which y and « essentially cross so
that the edge space Z, x {0} is outside B(o, (y|a)o, + R).Let p,q € Z, x {0}
be points where y and o respectively meet the edge space. By hyperbolicity,
the geodesic from p to ¢ must go within distance (y|«), + C of o, but by
quasiconvexity it must remain within a distance C of Z, x {0}, a contradiction
for R > 2C. So case (i) is understood.

Now suppose we are in case (ii), where y is a finite path with final vertex v,
and final edge e. If y leaves Z, through some Z, x {0} and does not return,
as it does not essentially cross ¢’ it must limit to a point of A./. So if y does
not limit to a point of any edge space, by quasiconvexity its tail must live in
N¢(Z,) for some constant C, and so x € A,.If x € A, also for some v’ # v,
then the tail of y must live in N¢(Z,/) also, hence in N¢(Z,/) for any edge e’
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806 M. Carrasco, J. M. Mackay

between v and v’; as this contradicts our assumption on y we have that v is
unique as required. O

In the rest of this section we will use the approximate self-similarity of the
boundary of a hyperbolic group: there exists Lo > 1 so that forall x € X =
000Z, and all 0 < r < diam X, there exists g € G so that the action of g on
X induces an Lg-bi-Lipschitz map from the rescaled ball (B(x, r), %d) to an

open set U C X with B(gx, LO) cU.

Lemma 2.2 (cf. [7, Proposition 6.2], [5, Proposition 3.3], [33, Corollary 4.9])

Suppose Z is a hyperbolic, proper, geodesic metric space with a geometric
group action G ~ Z, base point o, and a visual metric d on X = 0572
with visual parameter €. Then there exists Ly > 1 so that X is approximately
self-similar.

Proof By the cocompactness of G ~ Z there exists D > 0 so that G -
Bz(o,D) = Z. Let Ly be given by [33, Corollary 4.9] applied to D, the
hyperbolicity constant §z for Z, and parameters Co, € for the visual metric d.

Suppose we are given x € X andr € (0, diam X].If —e ! log(2rCo) —8z —
1 > 0 then [33, Corollary 4.9(1)] with “y”=“x”, “r’”= r, and an appropriate
g € G gives an L,-bi-Lipschitz map from (B(x, r), %) toanopenset U C X
with B(f(x), Lib) C U. Otherwise, —e ! log(2rCo) — 6z — 1 < 0 and [33,

Corollary 4.9(2)] shows that 1 € G gives approximate self-similarity. O

2.2 Connected components in boundaries

Maximal splittings over finite edge groups enable us to control the geometry
of connected components in any space arising as the boundary of any space
admitting a geometric action by a hyperbolic group.

Recall that a metric space X is C-linearly connected for some C > 1
if for any two points x, y € X there is a compact connected set I C X
with diam /I < Cd(x, y). The following definition is used in the proof of
Theorem 3.2.

Definition 2.3 ( see [12, Theorem 3.11]) The components of a metric space
are uniformly linearly connected if they are each Kg-linearly connected for
some fixed K, > 1.

The components are uniformly separated if for some fixed Ky > 1, for all
0 < r < diam X, there exists a covering W, of X, by open and closed sets,
such that for all W € W, we have d(W, X\W) > r/K; and there exists
a connected component Y of X with Y C W and W is contained in the r-
neighbourhood of Y .
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Conformal dimension and splittings 807

Recall that by Stallings—Dunwoody [18,37], there is a maximal graph of groups
decomposition of G where all edge groups are finite, and the vertex groups
{G;} are all finite or one-ended.

Lemma 2.4 Suppose G is a hyperbolic group acting geometrically on a
geodesic space 7', and let X' = 000 Z' with a fixed visual metric d'. Let T be
a Bass-Serre tree corresponding to a Stallings—Dunwoody decomposition for
G with vertex stabilizers denoted {G}. Then

(1) the connected components of X' correspondto A, for G, one-ended, and
to points in dsoT';

(2) X' has uniform linear connectivity of components;

(3) X' has uniform separation of components.

The uniform separation of components condition is tricky to work if we let
X' be arbitrarily quasisymmetrically equivalent to X, but we only need the
case of visual metrics d’ as in the lemma.

Proof Consider a Stallings—Dunwoody graph of groups decomposition of G
with corresponding tree 7. Let Z be the model space for this graph of groups
decomposition for G constructed as in the previous section with base point o,
let X = 0 Z be its boundary with a visual metric d as before.

Since G acts geometrically on Z’, there is a quasi-isometry ¢ : Z — Z’
which sends the orbit G - o to the orbit G - ¢ (0) equivariantly; let o’ := ¢ (0).
Lety : Z' — Z beaquasi-inverse of ¢, sending G -0’ to G -0 equivariantly. As
before, write A, = A(Gy), A, = A(G,) for the given limit sets in X, and let
A/}, A}, be the corresponding limit sets in X'. By equivariance, doop (Ay) = A/
and 90 (Ap) = Al.

We now begin the proof of (1). Since the edge groups are finite, in Z the
edge spaces Z, x {0}, e € ET, have uniformly bounded diameter.

Consider a geodesic ray y’ from o’ in Z’. Let y be a geodesic ray from o in Z
at bounded Hausdorff distance from the quasi-geodesic ¥ (y’). By Lemma 2.1,
and since A, = ¥ for any e € ET, every x € X either corresponds to a point
of 05T, or to a point in A, for aunique v € VT.

We define the simple path y in T as in the proof of Lemma 2.1; by con-
struction it is independent of the choice of y, so we write ' := 7. Suppose
we have two geodesic rays y’, o’ in Z" with corresponding geodesic rays y, «
in Z as above. If y essentially crosses some edge e € ET and o does not, then
the Gromov product (y|a), is < dz(o, Z, x {0}) 4+ C, and so the condition
“essentially crossing e” splits X into two sets at positive distance, thus the limit
points of y and « are in different connected components of X. As 0 ¢ is a
homeomorphism, the limit points of " and «’ are in different connected com-
ponents of X’. Thus if the limit points of " and &’ are in the same connected
component of X, then y’ = &'.
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If 7 is unbounded, and o is a geodesic ray in Z’, either &’ # p’ and so o’
limits to a different connected component of X', or &' = 9/, so by Lemma 2.1
a and y represent the same point in X = 0 Z, and so «’ and y’ represent
the same point in X’ = 9,¢ (X). This point corresponds to the point in 9o T
represented by 7.

On the other hand, if 7’ is a finite path, let v be the final vertex of the path.
Therefore y must meet Z, in an unbounded set, and limits to a point of A,,
and so ' limits to a point of A}, which is the image of d,g,G;, under the
boundary of the orbit map G — Z’. As G;, is infinite it is one-ended, so
000G, is connected and thus so is A/}, and every geodesic ray o’ with &' = p’
is in the same connected set A/. So (1) is proved.

We now prove (2). By Bonk—Kleiner [4] the boundary of a one-ended hyper-
bolic group is linearly connected. If v € VT corresponds to a one-ended vertex
group, then as g,G;, — Z, — ¢(Z,) is a quasi-isometry embedding into Z’,
the boundary map £,000Gi, = 00080 Gi, =& Ay — A/v is a quasisymmetric
embedding, so A/, is also linearly connected, though not a priori with constants
independent of v.

However, we can use the approximate self-similarity of X’ = 0,2
Let €” denote the visual parameter of the metric d’. For v € VT we have
diam A/, < e~€'42/(/"9Zv) pecause all geodesic rays from o to points in A/
must pass within bounded distance of the same edge space adjacent to ¢ Z,,, and
in particular their Gromov products with each other are all > d/ (o', $Z,)—C.
By Lemma 2.2, for all v we can find a g € G so that, up to scaling, A/, is
uniformly bi-Lipschitz to g - A}, = A}, where diam A}, > 1/C > 0. Thatis,
A;,v is one of finitely many possible candidates. Thus the linear connectivity
constant of A/, may be taken independent of v. We have proven (2).

It remains to show (3).

Given R > 0, let Eg be the set of edges of T so that the corresponding edge
spaces ¢ (Z,) are within distance R of the base point o’ € Z’. Partition the
boundary X’ according to the last edge in E g which the corresponding geodesic
rays y’ essentially cross, i.e., a geodesic representative y of the quasi-geodesic
ray ¥ (y’) essentially crosses the edge. Denote the partition by Wkg.

Notice that there is a set in this partition that corresponds to the rays whose
class does not essentially cross any edge in Eg. This set is a neighbourhood
of A, . The sets in this partition are closed since a limit of rays in the same set
is also in the same set. Since the partition is finite the sets are open as well.

For W € Wy if x € X’\W and w € W then by the definition of Wg we
must have (x|w), < R + C and so d’'(x, w) > ¢~ ®/C’ for some constant
C'.

Consider W € Wp corresponding to geodesic rays which essentially cross
an edge e € Eg last, and let v be the vertex of e furthest from vg. If W
corresponds to rays not essentially crossing any edge of Eg, let v = vy.
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If G, is finite, then the (bounded) edge space for e is at distance > R — C
from o, else we would have to essentially cross another edge of Eg. So we can
take as Y C X’ the connected component of some such geodesic ray ¥ in W.
Indeed, by the proof of (1) above, every geodesic ray corresponding to a point
of Y essentially crosses the same edge ¢ as y’, so Y C W. Also, if w € W
then for any y € Y we have (y|w),, > R — C andso d'(y, w) < e €Rc’.

On the other hand, if G, is infinite, let Y = A!, ¢ W.If w € W then the
last point z of a geodesic ray to w in B(o’, R) is (within bounded distance
of) some point in ¢ Z,, as the ray essentially crosses the same edges of Ep
as any geodesic from o’ to ¢ Z,. Since G, is infinite there is a geodesic line
close to ¢Z, passing within bounded distance of z; let y,y’ € ¥ = A
be the limit points of the line. By hyperbolicity, one of the geodesic rays
from o’ to y or to y’ passes within a uniformly bounded distance of z, so
max{(w|y),, (w|y)y} > R — C, thus d'(Y, w) < e < R,

In conclusion the uniform separation of components, statement (3) of the
lemma, is satisfied for Ky := (C’)2 and by taking W, := Wg for R =
—Hlog(r/C)). O

2.3 Two-ended edge groups

We now consider in more detail the case when all edge groups are two-ended
(and hence all vertex groups are infinite). In general, stabilizers of different
edge groups can have the same limit sets, so to get stronger results about the
geometry of such groups we switch from the given graph of groups to a new,
bipartite, graph of groups. We follow Guirardel-Levitt [19].

Proposition 2.5 Given a hyperbolic group G with a graph of groups decompo-
sition over 2-ended edge groups, we can find a graph of groups corresponding
to an action G ~ T where the tree is bipartite with VT = VoT U V| T, and

(1) all VoT vertex groups are non-elementary and are conjugate to some
original vertex group;

(2) all ViT groups and all edge groups are 2-ended;

(3) different V1T vertex groups are not commensurable, and hence have dis-
Jjoint limit sets in G;

(4) every original vertex group that was non-elementary is also a new VoT
vertex group.

Proof Let G ~ S be the original tree action. The new tree 7 is what Guirardel
and Levitt call the tree of cylinders of S. Their construction is as follows (for
details see [19, Section 4], for an example see Fig. 4).

Define an equivalence relation ~g on the set of non-oriented edges of S by
e ~s e if G, and G, are commensurable (i.e. if G, N G, has finite index in
both G, and G.). A cylinder of § is an equivalence class [e]s.
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Fig. 4 Let A = (a1, a), B = (b1, by) be two copies of the free group and C = (c) >~ Z. Let
a = lay,ap] and b = [by, by], and consider the amalgamated product G = A *¢ B where the
injection maps are given by ¢ — a and ¢ — b2. The group G is isomorphic to the fundamental
group of the complex obtained by gluing two punctured tori to a Mobius band, one of them glued
along its boundary to the boundary of the band, and the other one glued along its boundary to the
mid-circle of the band. The splitting A *¢ B corresponds to the graph of groups decomposition
shown on the left. Notice that the edges of S issuing from a B-vertex are naturally paired: in
this case the cylinders are the pairs of edges having the same stabilizer. The tree of cylinders
T corresponds to replacing these pairs by a tripod. The associated graph of groups is shown on
the right

Notice that since G is hyperbolic, given two edges e and ¢’ of S either
AeN Ay =@or A, = A,. Moreover, e ~g ¢ if and only if A, = A,.

By [19, Lemma 4.2] every cylinder of S is connected, and hence a subtree.
Since there are only finitely many conjugacy classes of edge groups, and
there are only finitely many conjugate edge groups that can contain a given
loxodromic, every cylinder is finite.

The tree of cylinders 7' is the bipartite tree with vertexset VT = VyT UV T
defined as follows:

(1) VoT isthe set of vertices v of S belonging to at least two distinct cylinders;

(2) V1T is the set of cylinders [e]s of S;

(3) and there is an edge between v and [e]s if v as a vertex of S belongs to the
union of edges of [e]5s.

That is, the tree T is obtained from § by replacing each cylinder by the cone
on its boundary. See [20, Definition 4.8] for the proof that 7" is indeed a tree.
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Moreover, the group G acts on 7" and the action G ~ T is also minimal, [20,
Lemma 4.9].

Notice that a non-elementary stabilizer G, of a vertex v of S has infinite
degree in S. Therefore, if a vertex of S belongs to only one cylinder, it has finite
degree and its stabilizer must be two-ended. That is, vertices of S with non-
elementary stabilizers are also vertices in V7. This shows (4). Moreover, the
stabilizer of a vertex in V(T is the same as the stabilizer of the corresponding
vertex in S, so no new non-elementary vertices are created by this construction,
and this gives (1).

The stabilizer of a vertex in V| T is the global stabilizer of a cylinder [e]s in
S, which coincides with the maximal two-ended subgroup containing G, for
any edge ¢’ € [e]s. This proves the first claim of (2), and shows that an edge
stabilizer of T is elementary. But if (v, [e]s) is an edge of T, then its stabilizer
contains the stabilizer of the edge of [e]s incident to v, which is two-ended.
Therefore edge stabilizers of S are two-ended (see also [19, Proposition 6.1]).
This completes the proof of (2). Property (3) follows directly by the definition
of cylinders. |

2.4 Metric estimates for the limit sets of the bipartite tree action

To compute conformal dimension we need metric estimates on boundaries. In
this section we estimate the distances and diameters of the limit sets of the
vertex groups appearing in the bipartite tree action of Proposition 2.5. We use
K1, K>, ... for the constants found in these estimates so that their use is clear
later in the paper.

We think of the V| T vertex spaces/groups as generalised edge spaces/groups,
and indeed we do not need to consider edges any more, since every edge space
is at finite Hausdorff distance from the adjacent VT vertex space. Neverthe-
less we keep the notation so that v stands for a vertex in Vo7 and e stands for
avertex in V1 T. So Lemma 2.1 becomes:

Lemma 2.6 If G is a hyperbolic group with G ~ T as in Proposition 2.5,
with G acting geometrically on the model space Z, and X = 000Z with a
visual metric, then every x € X corresponds to exactly one of the following:

e a point of 0T, with a unique x for eacht € 35T, or
e a point of A, for some unique e € V1T, or
e a point of Ay for some unique v € VoT (but not in any A.).

As before, by quasiconvexity A, is a quasisymmetric image of g,050G;,
foreach v € VyT. Likewise, foreache € V| T, A, is a quasisymmetric image
of g,050Gy,, that is, it is a pair of points in X.

Fix corresponding basepoints vg € Vo1, 0 € Z. For each v € VoT \{vp},
let e, € VT be the last V| T vertex on the geodesic from vy to v. We have
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that A, cuts X into at least two components [9, Sec 1], while the interior of
the open edge (e,, v) cuts T into exactly two components, one containing vg
and the other not. Let Z._,, be the component of Z\Z,, ) x {0} containing
o, and let Z,, _. be the other component. We define U, := 000Z,, and
Uy 1= 000Ze,—. Since Z,, and Z,, _, are quasiconvex, these correspond
to the closure of the limit sets of the corresponding components of 7'\ (ey, v).
Note that Uy N Uy = A, .

We let Uy,—. := X and leave U, and Aev0 undefined.

We say that w € VyT is a descendant of v € VyT'\{vg} if v separates w
from vg in 7. We also say that all vertices of T are descendants of vg. For
v € T, we denote by Tp(v) the collection of v and all its descendants in Vo7 .

In all the following lemmas we assume as above that Z is a tree of spaces
for a graph of groups decomposition of the group G like in Proposition 2.5.

The following lemma implies that for any e # ¢ € V|T, we have
A(Ae, Apy) = 1/K1, where

dUu,Vv)

AU,V) = — -
( ) diam U A diam V

is the relative distance of U,V C X.

Lemma 2.7 There exists a constant K| so that for e # ¢’ € V| T we have
d(Ae, Ay) >k, diam A, A diam A, .

Proof Pick loxodromic elements g, g’ so that g7 = A, and (g")*>® = A,
and let £, ¢’ be their translation lengths; as there are finitely many conjugation
classes of edge stabilizers, we may assume that £, ¢’ are uniformly bounded
away from 0 and oo, and that there are uniform bounds on the quasi-geodesic
constants for n — g" and n — (g’)".

Consider the tree approximation to geodesic axes for A, and A, as in
Fig. 5. Suppose, as in the left of the figure, the axes remain 2§z-close for a
large distance L, where §7 is the hyperbolicity constant for Z. Up to swapping
g, g~ ! this means that there is a point p so that for any i < L/¢', the point
g Lt/ (") p is uniformly close to p. Thus, by the uniform properness of
G ~ Z, there exists L’ independent of e, ¢’ so that if L > L’ then there
exist i; # iy so that g‘Uly/ﬁJ (gHh = g‘LizZ’/u (g")"2, hence (g) and (g’) are
commensurable, a contradiction to the disjointness of A., A,.

Thus, up to a uniformly bounded error, the tree approximation of A, A,
must look like the right of Fig. 5, for some ¢ > 0. Up to swapping e, ¢’, the
position of o in the tree approximation must look like that of o or o’ in the
figure; suppose the former (the latter case is similar and easier), and label
the other relevant distances a, b, up to bounded error. One can compute that
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Ze—> <_Z/ Z€—> <_Z/
€ €

Fig. 5 Tree approximation for Lemma 2.7

d(Ae, Ay) < e €@tD) diam A, < e~€%, and diam A, =< e €@t01+0) g0 as
a+b+c>a+ bwe are done. O

The tree-of-spaces structure of Z implies the following bounds when we
consider how edge limit sets cut X.

Lemma 2.8 There exists a constant Ko so that for v,w € VoT \{vg} with
w € Ty(v) we have

AUy, Uy-) =K, d(Aev’ Aew)-

Proof Since A,, C Uy and A,, C Uy, we have d(U—y, Uy-)
d(Ae,, Ae,). In particular, if A, = A, then d({Ucy,Uy-) = 0
d(Ae,, Ae,), so we can assume that A, and A, are disjoint.

Suppose x € Uy and y € U,,—,. By the quasiconvexity of Z, , a geodesic
from o to x must lie in the C-neighbourhood of Z ., . By the quasiconvexity
of Z,,, a geodesic from o to y must consist of an initial segment of length
dz(o, Z,,) from o to a point within distance C of Z,,, then a tail which
remains within distance C of Z,,_,. If we let e = e, and ¢’ = ¢,, as in the
proof of Lemma 2.7 and consider Fig. 5, this means that (x|y) <a + b + C,
and so d(x, y) = e €@th) < d(A,,, Ae,) by the argument of Lemma 2.7.
Thus d(U—y, Uy—) = d(A,,, Ae,) and we are done. O

I IA

Lemma 2.9 There exists a constant K3 so that for any v € VoT \{vo} and
p € Uy, we have d(p, Uy) =Kj3 d(p, Ae,).

Proof Take u € VT so that v € To(u), dr(u,v) = 2. Then since A,, C
Ay CUcywehaved(p, Uy) <d(p, Ae,).

Now suppose p ¢ A, . By the quasiconvexity of Z, a geodesic y from
o to p travels from o to within C of a nearest point in Z,, to o, then travels

within Nc Z, to apoint g, then staysin Z, _,\Nc Z,,. Moreover,d(p, A.,) <
e—€dz(0.q)
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Suppose we have y € Uy = 000Z,. By the quasiconvexity of Z, , a
geodesic from o to y cannot stay close to y past ¢, thus (y|p) < dz(o, q)+C’.
Sod(p, Ae,) < e~€42(0.9) < d(p, y). Taking the infimum over all y € U_,,
we conclude that d(p, A.,) < d(p, Uy). O

A vertex limit set A, its parent edge limit set A, and U,_,, the part of X
containing A, which A, cuts out, all have comparable diameters.

Lemma 2.10 There exists a constant K4 so that for v € VoT \{vo}, we have
diam A,, < diam A, < diam U,_, < Ksdiam A, .

O

Proof As A., C A, C Uy, the first two inequalities are trivial. Now as
A, is two-ended, diam A, =< e—€4z(0.2¢,) By the quasiconvexity of Z,, any
geodesic y from o with a tail in Z, _, must satisfy dz(y (t), Z.,—) < C for
allt > dz(o, Z.,). So by the definition of U, _,, if x € U,_, then the geodesic
ray from o to x must have a tail in the C-neighbourhood of Z, _, also. Thus for
two points x, y € U,_,, the quasiconvexity of Z, implies that the geodesic
line from x to y will live in a bounded neighbourhood of Z, _,, and hence
(x|y) = dz(o, Z,,) — C thus

—edz(0,Z,

diamU,_, = sup d(x,y) <e ) = diam A, .

x,yelUy—
O

The (relative) diameter of limit sets reflect the configuration of the corre-
sponding vertex spaces.

Lemma 2.11 There exists a constant K5 so that for any v, w € VoT with
w € To(v), we have

diam A, =g, e 92020 < p=edro.v) g (2.12)
dl.am Ay =K e €4z (pv.Zw) < e—EdT(Uyw)’ (2.13)
diam A, ;

where p, € Z, is a closest point in Z, to 0 € Z.

Proof The projection Z — T that collapses each vertex space to a point, and
each edge space to an edge is 1-Lipschitz, so the second inequalities are trivial.

For the first inequality in (2.12), as Z,, is quasi-isometric to the coset g,G;,
and G;, is an infinite group, for any point p € Z, there is a geodesic line y so
that d(y, p) < C and y is in the C-neighbourhood N¢(Z,) of Z,. Suppose
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Pv € Z, is a closest point to 0. As there is a geodesic line almost through p,
which limits to points in A,, we have diam A, > e~€42(©:Pv) = g=€dz(0.2)
On the other hand, for any distinct x, y € A, if « is a geodesic line from x to
v, by quasiconvexity « C N¢(Z,), and so (x|y) = dz(o, Z,) — C and thus,
taking the supremum over all x, y € A,, diam A, < e—€dz(0.2y)

Let p, € Z, and p,, € Z,, be closest points to o in Z, and Z,,, respectively.
By (2.12) we have diam A,/ diam A, =< e€(@z(0.Pw)=dz(0.pv)) By quasicon-
vexity and hyperbolicity, the geodesic from o to p,, passes within distance C
of py, and p,, is within C of a closest point to p, in Z,,, thus

ldz(pv, Zw) — (dz(0, pw) —dz(0, py))| = C,
and the conclusion follows. O

Points in two different limit sets cannot be much closer to each other than
they are to their first common ancestor.

Lemma 2.14 There exists a constant K¢ so that if v € VoT, w, w' € Ty(v)
with dr (v, w) = d7 (v, w') = 2 and w # w’, then for x € Uy_,, d(x, Ay) <
Ked(x, Uy ).

Proof Suppose x € Uy—, and y € U, _ . By quasiconvexity of edge and
vertex spaces, there is a C so that a bi-infinite geodesic y from x to y has an
initial tail in N¢(Z,.,— ), then a segment in Nc(Z,), then a terminal tail in
Nc(Z,,—) (these may overlap). Let p be a closest point in y to o; necessarily
p € Nc(Z,). Note that e=€92(©:P) < d(x, y).

Take a bi-infinite geodesic g in N¢(Z,) passing within distance C of p.
Since p is within C of a geodesic ray from o to x, either (x|8(—o00)) >
dz(o, p) — C’ or (x|B(+00)) > dz(o, p) — C'. Without loss of generality,
suppose the latter holds. Then

d(x, Ay) < d(x, B(+00)) < e 921} = d(x, y).

Taking the infimum of the right-hand side over all y € U, we get
d(x, Ay) 2d(x, Uy-). o

Limit sets in the same orbit are, up to rescaling, uniformly bi-Lipschitz (as
we do not use the explicit constant later, we just call it C).

Lemma 2.15 There exists C so that for any v € T, the metric spaces

1
—A
{ diam Agv o }gEG

are all pairwise C-bi-Lipschitz.
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Proof As there are finitely many vertex orbits it suffices to show the theorem
forafixedv € T. We have that gA, = A, forany g € G by the equivariance
ofthemap Z — T.

By approximate self-similarity (Lemma 2.2) applied to a ball of radius
diam A, around a point of A, there exists 4 € G so that the map

1
Agy, —d hAgy,d
( & diam A, ) = (hhgo. d)

is bi-Lipschitz with uniform constant. Since diam h A, = diam Ay, is then
> 1, we have by Lemma 2.11 that dz (o, Zpgy) < Cy for some constant Cj.

Recall that gy0 € Z,, so0 ggyo € gZ, = Zgy. Let g1,..., 8 € G be
chosen so that any Zg,, g € G, with dz (o, Zgy) < Ci has g'v = gv for
some i € {1,..., k}. Moreover, we can choose g; so that g;g,0 € Zg,, is a
closest point to o in the orbit Go N Z,,, and so dz (0, gigvo) < C». Thus for
any i, j e {l,...,k},

dz(0, gjg"'0) < dz(0, gj8v0) + dz(gj8v0, 88 0) < Ca + dz(gigv0, 0)
< 2C,.

Suppose for any two i,j € {l,...,k} we map Ag, to Ag, by
h o= gjgi_l. Then for any two points x,y € Ag,y, we have d(x,y) =
e €0o = =WV and d(h'x, h'y) =< e W XW'Yo As |(Wx|hy), —
(W' x|h' y)pol < dz(o, h'0) < 2C,, we then have that the map /2’ acts to send
Agiv t0 Agjy in a uniformly bi-Lipschitz way.

So in conclusion, by a uniformly bi-Lipschitz map one can send any of the
spaces <Agv, Md) to one of a finite set of spaces Ag,y, ..., Agy Where

each diam Ay, =< 1, and these spaces are each pairwise bi-Lipschitz with
uniform constants. O

A metric space X is C-uniformly perfect if for any x € X, r € (0, diam X),
we have B(x,r)\B(x,r/C) # (. This property is preserved by quasisym-
metric maps, up to changing the constant C (see [22, Exercise 11.2]). For
completeness, we recall that a homeomorphism f : X — X' is qua-
sisymmetric if there exists a homeomorphism n : [0,00) — [0, 00) so
that for all x,y,z € X, d(x,y) < td(x,z) implies that d(f(x), f(y)) <
n()d(f(x), f(z)) [40].

Lemma 2.16 There exists C so that for any v € VoT, the metric space A, is
C-uniformly perfect.

Proof Suppose H is an infinite hyperbolic group, and 0 H is endowed with
a visual metric with visual parameter €.
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If 000 H has at least 3 points there is an ideal hyperbolic triangle limiting to
distinct points yi, y2, ¥3 € dooH. For any x € dooc H and r € (0, diam 0o H |
there exists & € H so that the action of 2 moves the quasi-centre of the ideal
triangle to a point p on the geodesic from the basepoint o to x at distance
~ _Tl log r from o. Inspecting the tree approximation to o, x, hyy, hyz, hys,
we see that for at least one i € {1, 2, 3}, (x|hy;), is approximately dg (o, p),
and so dy__ g (x, hy;) =< r. This suffices to show doo H is uniformly perfect.

For any v € VT, since A, has more than two points then as the map
00c8vGi, — Ay is a quasisymmetry, dooG;, has more than two points and
so is uniformly perfect. The composition d,cG;, = gv00cGi, — Ay is a
quasisymmetry, and so A, is uniformly perfect too. By Lemma 2.15, up to
rescaling the spaces {A g, } are uniformly bi-Lipschitz, so {A,} are uniformly
uniformly perfect. As there are only finitely many vertex orbits in 7" we are
done. m|

3 Conformal dimension and Combinatorial modulus

In this section we describe how conformal dimension can be calculated using
combinatorial modulus by work of [5,12]. Using this we reduce Theorem 1.4
to a statement about such modulus, Theorem 3.4 below.

First, a complete metric space X is Ahlfors (Q-)regular if for some Q > 0
there is a Borel measure p on X so thatforall x € X, r € (0, diam X] we have
w(B(x,r)) =< r2. In such a situation Q must equal the Hausdorff dimension
of X, and moreover  must be comparable to the Hausdorff O-measure on X.

If Z is a Gromov hyperbolic space admitting a geometric action (that is, a
proper and cocompact action by isometries) by a finitely generated group, then
the boundary 9, Z endowed with a visual metric is Ahlfors regular by work of
Coornaert [14]. We work with the following variation on Pansu’s conformal
dimension.

Definition 3.1 Let X be a metric space. Then the (Ahlfors regular) conformal
dimension of X is the infimum of all Q such that X is quasisymmetric to an
Ahlfors Q-regular space.

If G is a Gromov hyperbolic group then Confdim 0, G is a well-defined invari-
ant of G, and if a group H is quasi-isometric to G then Confdim 0o H =
Confdim 0,,G.

The (Ahlfors regular) conformal dimension of a space which is approx-
imately self-similar can be calculated using estimates on ‘combinatorial
modulus’ [5,12], which we now go on to describe.

We fix a large constant @ > 1 from now on (a > 2 suffices). Foreachi € N,
let X; be a maximal a_i—separated setin X, and let S; = {B(x, a_i)}xeX,- be
the corresponding cover of X.
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818 M. Carrasco, J. M. Mackay

For § > 0 let I's be the collection of all paths in X of diameter > §.
Let p, : S — [0, 00) be a function (a “weight function”). We say that p,
is ['s-admissible if for any y € I's, we have

b= ) (A =1L

A€eS,, ANy #0

The S,,-combinatorial p-modulus of T's is defined by

Mod,(I's, S;) := inf Vol ,(p,), where Vol,(p,) := E on (AP
Pn
A€eS,

and where we infimise over all I's-admissible p, : S,, — [0, o0). The critical
exponent for the p-modulus is defined by

pe(8) := inf {p > 0 : liminf Mod,,(T's., S,,) = 0} ,
n—o0

Theorem 3.2 (Keith—Kleiner, Carrasco [12, Corollary 3.13]) If G is a hyper-
bolic group acting geometrically on an unbounded geodesic (hyperbolic) space
Z, with boundary at infinity X = 00cZ endowed with a visual metric d and
pc(8) defined as above, then there exists 69 > 0 so that for all 0 < § < o,

Confdim 050G = Confdim X = p.(5).

Proof Such an X equipped with a visual metric satisfies the hypotheses of [12,
Corollary 3.13] by Lemmas 2.2 and 2.4. O

In order to estimate p.(8), it actually suffices to show that Mod , (I's, S;,) is

bounded independently of n, provided the maximum value of p,, goes to zero:

Lemma 3.3 (Bourdon—Kleiner [5, Corollary 3.7(3)]) For any p > 1 and é,
for some S, Ts as above, if there exists p, : S, — [0, 00) weights that are
['s-admissible, and ||ppllcc — 0 as n — 00, and sup, Vol,(p,) < oo, then

pe(8) < p.

Proof For any € > 0,

Volpse(on) = D (A" < 1oallS, Vol (o) — O as n — oo,
AeS,

therefore p.(8) < p + €; as € was arbitrary we are done. O
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So for each p bigger than our intended upper bound, it will suffice to find
8 € (0, 8p) and such a sequence of weight functions.

Theorem 3.4 Suppose G is as in the statement of Theorem 1.4 and X a visual
metric on the boundary of the model space arising from the tree of cylinders
construction of Proposition 2.5, and § > 0 is fixed.

Then for any p > 1vmax{Confdim 0,,G;}, there exists weight functions p,
on S, so that each p,, is I's-admissible, lim,_, o || o1 |lco = 0, and the sequence
Vol (p,) is bounded.

This theorem will be proved in subsequent sections, as we now summarise.

Proof The weights are defined in Sect. 4, up to a choice of parameters &', E1,
E> and E3. Theorem 5.1 shows that lim,,_ o || o1 ]lcc = O and fixes the value
of E;. Admissibility is shown, for suitable (now fixed) parameters §’, E| and
E3, by Theorem 6.1. The uniform bounds on Vol,(p,) are then shown by
Theorem 7.4. |

Proof of Theorem 1.4 The lower bound
Confdim 05,,G > 1 v max{Confdim 9,,G;}

follows from the fact that G is not virtually free and that each vertex group G;
is quasiconvex in G.

For the upper bound, let §p be given by Theorem 3.2 for X = 05 G, and fix
8 € (0, 80]. By Theorem 3.2, Lemma 3.3 and Theorem 3.4 we then have

Confdim 050G = p(8) < 1 vV max{Confdim d5,G;}.

4 Candidate weight function

Our goal in this section is, given a choice of p > max{Confdim d»,G;}, to
define suitable weight functions as in Theorem 3.4. The idea is similar to that
of the example in Sect. 1.3: to iteratively define weights that turn geometric
sequences of scales into arithmetic. There are additional complications which
we describe as they arise.

We continue with the notation of Sect. 2, and T is the tree of cylinders of
Proposition 2.5 with VT = VyT U V| T. Let vg € VT be the fixed basepoint
inT.
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Projections to T

We project S, onto T as follows: for A € &, define the tree projection
m(A) € VoT to be the closest vertex to vg in the convex hull

Conv(veTpV:AyNA#£D)

of all vertices whose limit set intersect A. The relationship between A and
Az (a) 1s indicated by the following:

Lemma 4.1 There exists K7 > 1 so that for A € S, diam Ay (a) > K%a_”,
n

and the distance from the centre of A to Ay ) is at most K7a™".
Proof If m(A) = vg the bounds are trivial, so assume otherwise. Since A is

centred on a point p € Uza)— and does not meet Ae,(4)» by Lemma 2.9
d(p,Ucra)) < d(p, Aen(A)) > a ", thus Uza)— = X\Uz(a) contains
a ball centred on p of radius < a™". So by Lemma 2.10 and the uniform
perfectness of X, diam Ay 4) > diam Uy (a)— > a™".

If AN Azca) # @, we are done for any K7 > 1. Otherwise A N A4y = 9,
but by the definition of w(A), A must meet Uy, and U,y_, for two distinct

w,w’ € Ty(v) with dr (v, w) = dr (v, w') = 2. Therefore by Lemma 2.14,

d(A, Az 2a™". O

Given v, w € VT, let [v, w] C VyT be the unique simple path from v
to w. Suppose A € S, and [vg, w(A)] consists of vy, vy, ..., vy, = 7T(A). If
v=uv; forsomei € {0,1,...,m—1}thenletv_, 4 = vj41;if v = 7w (A) then

let v 4 =m(A); and if v ¢ [vg, m(A)] let v, 4 be undefined.
Let us also define for any § > 0

Ts := Conv ({vo} U {v € VT : diam A, > §}), 4.2)

which is the convex hull of the finite set of vertices in 7 whose limit sets are
large (see the first equality in (2.12)); such sets will be used in the definition
below.

Model spaces

We are given a choice of p > max{Confdim d5,G;}, and want to define
suitable weight functions as in Theorem 3.4. For v € WT, fix Q, €
[Confdim 050G, p), with the choice uniform on each G-orbit.

Forv € WyT, let D, = diam A,. For each G-orbit Gv C VT, the collec-
tion of rescaled spaces {DLgUA v} are all uniformly bi-Lipschitz to each other

(Lemma 2.15). For each v € T, we fix a Q,-regular space X, = (X, dy) of
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diameter 1 in the conformal gauge of dG,, and an n-quasisymmetry map
hy : Ay = X,. Again by Lemma 2.15, X, and &, may be chosen so that the
maps hgy : DLXUA gv —> Xy have X, independent of g and the different maps
hgy differing from each other only by a uniform bi-Lipschitzhomeomorphism.
(This last condition means that there exists C so that for any g, g’ € G, there
exists a C-bi-Lipschitz homeomorphism f : DLgUA v = ﬁz\ ¢'v SO that
hgy = hgy o f.) Finally, the distortion function 7 may be chosen uniformly
for all v, as dilations do not affect distortion.

As n is fixed and the spaces A, are uniformly perfect with constant inde-
pendent of v (Lemma 2.16), we can find T € (0, 1] and A > 1 so that the maps
hy : D%Av — X, are uniform (7, 1)-bi-Holder maps by [40, Theorem 3.14],
i.e.forallv e VyT andall x, y € Ay,

! (—d(x’ ) 4.3)

dx, y)\"
A D, D '

v

1/t
) < dy(hy(x), hy(y)) = A (

When we push the cover S, forward by 4, to X,, it is useful to know that
the images are contained in balls of radius smaller than @ ~""» /2 for a suitable
my; by (4.3) we can take

my = [t(n +log, Dy) —log,(21)] Vv 0. “4.4)
Definition of weight function

For each n € N, and a constant £ found later, we define the weight function
on Sy — R4 by

pa(A) = Era™ [T oy(A). (4.5)
veWT

Forv € VyT and A € S,, A, and A can interact in three ways according
to whether v ¢ [vg, m(A)], v € [vg, T(A)) or v = w(A). In the first case, we
don’t want p!! to influence p, (A) at all; in the latter two we need to define a
subset of A, corresponding to the location of A in or near A, :

0 if v ¢ [vo, T(A)],
Woa:=he, , ifvelv,m(A)), (4.6)
By otherwise,

where B4 isaballin A, , = A, of radius a™" centred on a point at most
K7a™" from the centre of A; such a ball exists by Lemma 4.1.
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How shall we define p;} (A)? The first ingredient is to distort according to /1,:
we want the relative size of W), 4 in A, to match the relative size of h,(Wy 4)
. diam Ay (W, 4)/1
m Xv, SO we ha.ve a fE.lCtOI'.Of W . ‘ '

The second ingredient is to transform geometric to arithmetic scales: for
i =1,...,m, the annulus of points at dlstance [a= D g~ from hyA,,

should be sent to an annulus of w1dth L 50 sets at distance ~ a~ from

hyA., should be stretched by ~ —— But we don’t want to do this to large

vertex limit sets, or if a set is too close to A,,, as either could interfere with
showing admissibility. So, for W C A, we let

if dy(hyW, hyA,) <a ™ orv e Ty, and

’ 4.7)
mydy(hyW, hyA,,) otherwise,

fo(W) =

where Ty is the finite subtree defined by (4.2) for a suitable parameter 8" €
(0, diam A,,) determined later. Note that we only use ¢, in (4.7) when it is
defined since v ¢ Ty implies v # vg.

Combining the two deformations leads us to define, for each v € VT,

ifd(A, U y) < Era " or
v S 1 or vaA - @, and (4.8)

1

diam h, (W, 4) E3D,
diam WU,A fv(Wv,A)

PI(A) =

otherwise.

Here E;, E3, along with E1 from (4.5), are constants we choose later.

By Lemma 2.11 and (4.4), for a given n there are finitely many v with
my > 1, s0 p, is well-defined, given choices of the constants 8, Ej, E» and
E5.

5 Bounding the maximum value of p,

Recall that the idea of p,, is to send a geometric sequence of annuli of points in
A, atdistance [a TV a~ ] fori = 1, k (and suitable k) to an arithmetic
sequence of annuli of points at dlstance [2k T 3% +1] In particular, for some
v ¢ Ty but with A, =< 1, the smallest annulus in A, has size < a™", so is
covered by boundedly many balls in S,,. The p, value of these balls will be
= 1/n, giving a heuristic estimate || p,|lco > 1/n. This is essentially the worst
case, as we now show.

Theorem 5.1 For p, as in Sect. 4, for large enough E» and for any E1, E3, 8,
limy,— oo [l onlloc = 0.
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Proof Given A € S, consider the path [vg, 7 (A)] = {vg, v1, ..., vk = 7T (A)}
in VyT. By (4.5), (4.6), (4.8),

k
pa(A) = Era™" [ ] o} (4). (5.2)
i=0

In the proof we track the dependence of constants on Ey, E», E3, 8.

Step 1: Let t > 0 be maximal with v; € Ty. As Ty is finite, t < C for
some constant C; = C1(8’). Fori <, we have f,,(W,, 4) = 1and D,;, < 1.
Fori < t,diam Wy, 4 < 1 and diam h,, (W, 4) < 1. So

t—1

1_[,03[ (A) =c@e5 1 and  py (A) Xc(s,E3)
i=0

diarfl hv,(WU,,A)' (5.3)
diam W,

Step 2: A useful fact is the following: by Lemma 2.10, for 0 < i < k, as
Wya=A =A we have

) A i1

< Ut < K, 5.4
“ diam Wy, 4 — 4 (5-4)

Step 3: Consider the definition of p; in (4.8). Suppose for some i €
{0,...,k} we have d(A,U—,;) < Era " or m,; < 1, then let s be the
minimal such i. If no such i exists, set s = k + 1. If s < k then either

(1) d(A, Ucy,) < Eza™, and so p; (A) = 1 foralli > s,

2) my, < 1so Dy, <xa ", andsos < k < s+ C for some C by
Lemmas 2.11 and 4.1. Foreachi > s we have m,, < C, diam h,,; (W, a) < 1,

(mrf—v“’,‘vw = Z;Z = 1.If m,, <1 then pl’}i(A) = 1, else my, € (1, C] thus

Jui (Wy, 4) < 1 and so py (A) Xc(Ey) 1 also.
Therefore in either case (1) or (2) we have

and

—~

k
[ ] el (A) < C2 = Ca(Es). (5.5)

i=s

Step 4: Now for every t < i < s we claim that

diam iy, (W), 4) - C

FoWon)  — my (5.6)

First, if i < k then by Lemma 2.7 the relative distance of Wy, 4 = Aeui+1 and
Aev,» is bounded below. If i = k < s then as d(A, U—,,) > E>a™" we have
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that the relative distance of W, 4 = B4 and Aeuk is bounded below by the
definition of By, provided we fix E> := K7 + 2 say, by Lemma 4.1. Since
uniformly quasisymmetric maps uniformly distort relative distances (e.g. [1,
Lemma 3.2]),

diam Ay, (Wy, 4) _ G(E2)
mv,-dv,-(hv,- in,Avhv,—Aevi) T my, )

1

Second, if dy; (hy, Wy, A, hviAev,-) < a ™ then for i < k since the rel-
ative distance of Wy, 4 and Aevi is > 1/C, so the relative distance of
hy; Wy, 4 and hviAeu,- is > 1/C, but this last relative distance is also <
a~"vi / diam h,, Wy, A, we thus have diamh,, Wy, 4 < a ™. If i = k, as
W, 4 is a ball of radius a ™", diam h,,; (Wy,; o) < (a™"/D,,)* < a " .So for
I < kori = k in this second case we have

diam h,, (W,
M — diam hv,—(Wv,-,A) < Ca_mvi < .
fvi(in,A) My,

Step 5: By (5.2), (5.3), (5.5), (5.6) we have

s—1

diam Ay, (Wy, 4) .
diam Wy, 4

CD,,

—n
my, diam Wy, 4

pn(A) =C(E,8 E3,Ep) 4
=t+1

If s — 1 < ¢ + 1 this last product is vacuous. In this case by (4.3)

—n —n

a a
Pn(A) Zc@) (diam W, 4)1-7 = a—n—1 —
1%}

1
a~ " < -,
n

Sowe may assume t + 1 <s — 1.

By (5.4) fort +1 < i < s — 1 we have that CD,,/diam W,, | 4 is
bounded. As the sequence m,, is roughly decreasing at least linearly in i
(by (2.13)), for all but boundedly many terms at the tail of the sequence
i=t+1,...,5 — 1 wehave that CD,, /(m,, diam W,, | ,) < Cz/mle < 1.
Once m,, is small (but still > 1), D,;, < a~" and diam in,],A = a~ " also,
so CD,, /(m,, diam W,, | 4) < 1. Taken together, applying these bounds for
i=t+2,...,5s — 1, we have

diam hy, (Wy, 4)  Du,yy 1
diam Wy, 4 my,,, diam Wy _, a
- diam h,, Wy, 4

pn(A) <a™"-

mvr+1
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by (5.4) and diam W, 4 > a™".
If my,,, > tn/2, then p,(A) =< l . Otherwise m,,,, < tn/2soas Dy, <1

we then have by (4.3) that dlamhv, R e

/2
and p,(A) < “7= < L.
As in either case p, (A) < %, we are done. |

6 Admissibility

Our goal in this section is to show that for § < Jq there are suitable choices of
parameters 8, E|, E3 making the weight p, : S, — R as defined as in (4.5)
admissible for I's. We now treat the parameter E; as a fixed constant given by
Sect. 5.

Theorem 6.1 For § < & fixed, we can find §' € (0,8] and E;, E3 large
enough independent of n so that p, defined as in Sect. 4 is I"s-admissible for
all n.

Recall from (4.2) that
= Conv ({vo} U {v € T : diam A, > §})

is the convex hull of the finite set of vertices in 7 whose limit sets are large.
Curves in I's need not be embedded and can start and end at arbitrary points
in X; the following proposition finds a nice subcurve for any y € Is.

Proposition 6.2 There exist §' € (0, 8] so that:
Given y € T's, we can find an arc y € Tg so that

(1) y is contained in the image of y.
(2) y is contained in U,_, and has endpoints at least 8" apart in A, for some
veTy.

Before proving this, in the following lemma we relate points in X with points
inT,the compactificationof 7'. Forx € X, letIT(x) C T be the corresponding
point(s) in 7" determined by Lemma 2.6: I1(x) is either a unique point in doc 7’

a closed ball of radius 1 around a unique e € V1T (with x € A,), or a unique
v e VT (withx € Ay).

Lemma 6.3 For G ~ T as in Proposition 2.5, and I1 as above, if C C X is
connected, then T1(C) := IT(x) is connected.

xeC

Proof Suppose IT(C) is disconnected. Then as I1(C) C T is a union of a
subset of VT, radius-1 balls around vertices in V| T, and points of 05,7 , then
thereis a vertex e € VT\I1(C) so that [T(C) meets more than one component
of T\{e}. Since C N A, = §, this means that C meets at least two components
of X\ A,, and so C is not connected. O
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Proof of Proposition 6.2 First, find an arc, that is, an embedded path y; :
[0, 1] = X in the image of y with endpoints diam(y) apart.

Let w, € VpT be the closest point to vy in IT(y;) C T, following the
notation of Lemma 6.3. We call w € VT a child of w6 if dr(vg, w) =
dr (v, w6) + 2.

If y; meets Aw6 in exactly one or two points, those point(s) lie in some
Ae C A,y forsomee € Vi T adjacent to w(, with d7 (vo, €) = dr (vo, wy) + 1.
The points of A, split y; into two or three subarcs each living in some Uy,
for some child w of wy,. Necessarily, at least one of these subarcs has endpoints
8/3 apart. Let y» be such a subarc of yy, and let wg € VT be the child of w(/)
with y» C Uy .

If y1 meets Awé in more than two points, let y» = y; and let wog = wé. In
either case, y» meets A, in more than two points, has endpoints at least 6/3
apart, and y, lies in Uy, .

If there is a path in T\{wo} from IT1(y»(0)) to I1(y» (1)), then as y, is an arc,
there is e € V| T and two (possibly equal) children w’, w” of wq so that y,
consists of an initial subarc in U,,_, that joins y»(0) to a point of A, a subarc
y in Uy, joining the endpoints of A,, and a final subarc from the other point
of A, to y»(1) in Uy, . Therefore by Lemma 2.10

< d(1(0), y2(1)) < diam Uy, + diam A, + diam Uy, <, 41 diam A,,

W] >

so y satisfies our desired property.

So we now assume that wqo disconnects I1(y»(0)) from I1(y»(1)). This
includes the case that wy is in one of these sets; if it is in both, y» already has
our property.

Let 7o (resp. 1) be the first (resp. last) time y» meets Ay,,. If 1o > 0, the
subarc ¥2([0.4] lives in Uy, . for some child w_; of wg. Let 7_; be the
first time y» meets Ay, ,, and if z_; > 0 let w_; be the child of w_; with
»l.;1 C Uy _,—. Similarly, if #; < 1, let w; be the child of wo with
Y21111,11 C Uy, —, let 12 be the last time y, meets Ay, and if 1, < 1 let wy be
the ch11d of wi with 2[1,,1] C Uy

We claim that we can take 8’ = §/100K| K4 and our desired arc y to be
V2lit,5:.) for i = —1,0 or 1. Note these subarcs if defined have endpoints
in Ay, and live in Uy, . fori = —1,0, 1 respectively. For i = —1,0, 1
let €, = d(y2(t;), y2(ti+1)), when defined. Certainly if €y > 8" we can take
7 = V2llt.11]> SO assume €9 < §'.

If w is defined, either €; > 8’ and we are done, or €; < &'. If w» is defined
then the tail y»|,, 17 has diameter

< diam Uy,,—, < K4diam Aew < K4K1d(Aew1 ewz) < K4K1€1 <6/100
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by Lemmas 2.7 and 2.10. Likewise, if w_ is defined, either ¢_; > &’ and
we are done, or e_; < &', and then if w_5 is defined the subarc y»|[0;_,] has
diameter < §/100. If we reach this point, then whether or not w; exist for
i = —2,—-1,1,2, we deduce by the triangle inequality that the endpoints of
> have distance < §/100 + €_; + €9 + €1 + 5/100 < §/10, a contradiction.

So for 8" = §/100K | K4, we have found a subarc y which has endpoints in
some Ay, v € Ty, which are §’-separated, and y C U,_,. O

We will use the following observation about the relative positions of cut
pairs.

Lemma 6.4 There exists C so that if v, w € VoT with v € [vg, w], v # vy,
dr(v,w) =2and A, = {p+, p—} C Ay, then

l < d(hvp—I—» thev) <
C ~ d(hyp—, hyA,))

Cw

C.

Proof By symmetry it suffices to prove that d(h, p+, hyAe,) < d(hyp—, hy
Ae,).

Choose (not necessarily distinct) g, g+ € A, so that we have d(hy, p+, hy
Ae,) = d(hyp+, hvgy) and d(hyp—, hyAe,) = d(hyp—, hyq-).

By Lemmas 2.11 and 2.10 diam A,, < diam A,, so by Lemma 2.7

d(p—, p+) =diam A,, <d(A.,, Ae,). (6.5)
In particular, d(p—, p+) < d(p—, g—), and so by quasisymmetry d(h, p—, h,

p+) =d(hyp—, hyg-).
Thus

d(hyp+, theU) =d(hyp+, hvqy) <d(hyps, hyp—) +d(hyp—, hygy)
<d(hyp-,hvg-) +d(hyp—, hyq+). (6.6)

If g— = g4+ wearedone as d(hyp—, hyqg—) = d(hyp—, hyAe,).

Suppose g— # g+. Since d(hyp+, hyg+) < d(hyp+, hyg—), by the qua-
sisymmetry of 4", d(p+, g+) < d(p+, g—). Combining this with (6.5),
isymmetry of i, !, d(py. q4) < d(py.q-). Combining this with (6.5)

diam A,, = d(q+,q9-) <d(qy, py) +d(py,q-) 2d(py,q-)
<d(ps,p-)+d(p_,q-) 2d(A¢,, Ae,) +d(p—,q-)
<2d(p-,q-),

therefore d(hyq+, hyg—) < d(hyp—, hyg—). By Lemma 2.10, d(p—, g+) <
diam A, < d(q+,q-),sod(hyp—, hyq+) < d(hyq+, hyg-). Therefore

d(hvp—, th+) 5 d(th—a th+) 5 d(hvp—, th—)s
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and applying this to (6.6) we are done. O

Proposition 6.7 There are choices of parameters E1, E3 so that there exists
J > 0so that for all v € T, and any arc B joining A., in U, ., we have

> [] eiA) = Ja"diam A, (6.8)

AeS,:ANB#D weTy(v)

where we take diam Aev0 := 1. Moreover, if B is an arc in some Uy_,, v € Ty
with endpoints in A, that are §'-separated, then

Con(B) = 1. (6.9)

Proof We prove that (6.8) holds in stages. Before we begin, we summarise
the dependence of constants chosen in the proof. All constants, in partic-
ular Cq,...,Cq4 > 1, depend on the data of our space and the constants
K1, ..., K7 = 1. We choose ko, k; € N with ko := [log, (2ar(K4 V 3)1/7)]
and k; := [log,(6K>K3)]. We choose jy € N based on Lemma 6.4. We intro-
duce a parameter E4 which is chosen large enough depending on jo, ko, k1,
and set J := 1/E4. We find a constant C{ = Cj(J). The parameter E3 is
chosen large enough depending on jo, ko, CT (and Cy, Cy4). Finally we find
Cy =C;5(8) and set Eq :=1/(C5J8") = E4/C;8'.

Step I: Suppose v is a vertex with diam A, < E4a~" for a choice of E4 > E»
below. (The important case is when v is the child of some ¢ with diam A; >
E4a™".) Thus diam A, < E4a™",s0a" diam A,, < Ej4.

In the left hand side of (6.8), for any A meeting A,, (as B does), we have
thatd(A, U—y) = 0s0 p} (A) = 1. Also, forallw € To(v)\{v}, 7 (A) belongs
to [vo, v] so w ¢ [vo, m(A)], thus Wy, 4 = @ and p];, (A) = 1 also. Therefore,
the left-hand side is > 1, and so (6.8) holds for J = 1/Ej4.

Step 2: Suppose v has diam A, € [E4a™",§’) and all children of v satisfy
(6.8) with J. Note that v # vy.

The idea is that by requiring E3 large enough, J doesn’t get worse in our
estimate for (6.8).

If A e S, meets B C Uy and has W, 4 = ¢, then as v ¢ [vg, T(A)], A
must also meet U,. If d(A, A,,)) > 4a~" > 2diam A then for any p € A,
and using K3 > 1 from Lemma 2.9,

d(A, A,) <2d(p, Ae,) <k, d(p,Ucy) <diam A <2a7".
Thus we conclude that

d(A, A.,) <4Kza™". (6.10)
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The path g joins the endpoints of A, , travelling through A, with subarcs
passing through U,,_, for various children w of v.

Let kg, k1 be constants chosen as above, then add the condition m,, > ko+k
to E4,sothat 0 < kg <my, — k1 < m,.

For k € {ko, ..., my, — k1}, consider the points of X, = h, A, at distance
(a_k, a~ %1 from hyAe,, and call this set Y. By Lemma 6.4, there exists jo
so that if a child w of v has A,, = {py, p—},and py € Y}, p_ € Y}, then
lk—1] < jo.

The pair A hasdiam A, > % l diam A, by Lemma?2.10,sodiam i, A, >
AT I/T by (4.3). Note that a kO‘H < lk 'k, 1z by the choice of kg, so
each Yk, k > ko, consists of two disjoint balls centred on hyAe,.

LetM := [(my —ko — k1 —2jo—2)/(2jo+ 1)]; add the condition that E4
is large enough so that M > 1.

Foreachi €0, ..., M, consider

k=k@):=Q2jo+Di+jo+1+ko€tko+(o+1,..., my — ki — (jo+ D},

and the collection B; of subarcs of g that are either (i) in A, with &,-image
in Yy, or (ii) join A, in some Uwﬁ with w a child of v and A, A, meets or
jumps over Y. Here “jumps over” means that one end point lies i 1n Usr ¥
and the other in J;_; Y;. Note that by the choices of M and k = k(i), the
collections B; are disjoint, and if &, A., jumps over Y}, both points of 4, A,
are in B(z, a=*0F1) for the same z € h, A,,.

Subemma 6.11 For ki > log,(6K2K3), foranyi =0, ..., M and any A €
S,, which intersects some arc in B;, we have that w(A) € Ty(v).

Proof Case I, AN Ay # (: By the definitions of B;, (4.4) and k,
d(hy(ANAY), hyAe,) = a™* — diamh, (AN A)
>qk— %a_m" >a ™ (ak‘+j° — %) )
Thus by (4.3) and (4.4),

d(A, Ae)) = d(AN Ay, A,)) —diam A

_ . 1/t
a M akl+]0 _1
> D, ( ( : 2)> —2a~ "

. 1/t
>a " (2ak‘+f° - 1) —2a7" > 4Kza™"

because k1 + jo > k1 > log,(6K2K3) > log,(6K3). Thus by (6.10) we
have W, o4 # ¥ and as A N A, # ¥ we have v = m(a). (Note that therefore
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Wy.a = By for a ball By of radius a ™" satisfying A C (K7 4+ 1)By, soif a
collection of A’s covers 8/, then the corresponding collection of (K74 1)B4’s
also covers 8'.)

Case 2: For some child w of v, A intersects a subarc ,5/ C Uy that
meets or jumps over Yy. The endpoints of i, A, lie in UI;L{O_ io Y, and both
endpoints have the same closest point in A, A, . It suffices to show that W), 4

is either By (as w(A) = v) or A, (as w(A) € To(w) but w(A) # v). This
follows if we rule out 7 (A) € [vg, v).
Similarly to Case 1,

d(hyAe, . hyAe,) > a k= > a v gk

sod(Ne,, Aey) > a™" (2ak1)1/f. Since AN B’ C Uy_,, Lemma 2.8 gives

1
d(A, Ne)) > d(Uy-,Uy) —diam A > Fd(Aewa Ae,) — 2a7"
2
>a"K; ' (2a")VT 207" > 4Kza™",

where the last inequality uses k1 > log,(6K2K3), and so by (6.10)
WU,A # @. O

A jump B’ € B; going through some Uy, is large if there is some A € S,
with A N B # ¢ and w(A) € To(w). In this case, by Lemma 2.10 and
Lemma 4.1,

diam A, > Ki4diam Uy > Ki4diam Agcay > K41K7a_”. (6.12)

Suppose {;} C B; are the large jumps in B;, going through Uy, for w;
children of v. Consider the sets C; j :={A € S, : AN B; # ¥} for each j. If
A €C ;NG jfor j # J’ then A intersects both Uw,— and ij/_> C U,
soby Lemma2.9d(A, Aewj ) < a™". Therefore by (6.12), Lemma 2.7 and the
doubling of X, we have that there exists C independent of v, i, j so that any
A appears in at most C of these sets.

For each choice of i (which fixes k), we either have ‘many’ or ‘few’ large
jumps.
Case of many large jumps: Suppose » i diam hU(Agwj) > %a‘k . Consider a
given (large) jump thewj . There is a constant C3 so that there are at most C»
many A € S, with ANB; # P and 7(A) = v; forsuch A, [, ez, o4 (A) =
1. By the Step 2 hypothesis ZAeSn:AnﬁmUwP;éVJ [ueryw)) Pi(A) = Ja"
diam Aewj . So if diam Aewj > (2C2/J)a™" then we have
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n 1 n 3:
> [ et = 5Jd" diam A, .
AeS,:m(A)#v, ueTo(w;)
ANBNUip ;- #0

Moreover, when 7w (A) # v in this sum W, 4 = Aewj SO

> [T ricay= > ppA) [ eia

AE€S:ANBNUy ; — #D ueTo(v) A€S,:ANBNU.y ; — #0) ueTy(wj)
2 > TSI I AT
AeS,:m(A) £, ueTy(wj)

ANBN Uy, # 9

E3 D, diam hy (A, )
> . J A
- mva—k+jo diam Ae",v Z l_[ ’Ou( )
T AES,  n(A) £ v, veh@)
ANBNUy,—~ #0

E3D, 1

- n j:
2 a ki 2Ja diam hU(Aewj).

If diam Aewj < (2C,/J)a™" holds, then diam Aewj =c) a~". So for any
AeS,withANgnN Uyp;— # ¥ and 7(A) = v (and so Wy 4 = By with
diam B4 =< a™"), by the uniform quasisymmetry of &, we have

diam £, Aewj diam Agwj

=1 =<
= =

diamhvBA diam BA ’

thus, at the cost of aconstant C{ = Cj(J), we canreplace diam s, B, / diam By
in the relevant p!!(A) by diam h”Ave / diam Aew,-’ and so induction again
gives ' '

> [T ricar= > OV ) QAT

AeS,: ueTy(v) AES,: ueTo(w;)
ANBOUy, > # ¥ ANBOUy, s #0
E3D, diam hy (A, )
> O G A > [T st
mya= kT CY diam A, _
J Ac Sn . ueTp(w;)

ANBNOUy s #0
E3D,

n g;
> 7Cf‘mva*k+f0 Ja dlath(Aeu,j).

Summing over all large jumps {8} C B; we have

> [l AwzcY ¥ T[] s

AGUj Ci,juelp(v) J A€Ci jueTy(v)
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> — — Ja" diam hy (A, )
Cy I (CF vV 2)ymya=k+io /

E3D, Lak

> —J
= C1(CFV mpa*Fi0 "
E3 Dy
—Ja
2C(CT Vv 2)ymyalo

Case of few large jumps: We have that ) j diam A, (A ) < 2a —k_ but the

arcs and jumps in B; must total at least a **! — =% > 4% in diameter. Thus
the arcs and small jumps (that is jumps B’ where any A € S, with ANB' # @
has w(A) = v) must have total diameter in s, A, at least %a‘k

Suppose we have a small jump B’ through some U, _, , w’ achild of v. The A
which cover B’ each have aball B, centred ata point of A, atmost K7a~" from
the centre of A, so 8’ is in the (K7 + 1)a~" neighbourhood of A,. Therefore
by Lemma 2.9 we have B’ is in the K3(K7 + 1)a—" neighbourhood of Ne, >
so diam Ae , < 2K3(K7 + 1)a™", and thus by Lemma 2.10 diam U,y_, <
2K4K3(K7 + 1)a=". So there ex1sts Cz > (K7+1) so thatif A meets the small
jump B’, then C3 B4 covers the entire small jump including its endpoints. Here
foraball B = B(x,r)and C > 0, we set CB := B(x, Cr).

In the image then, if there is a sequence of arcs and small jumps connecting
points at least some distance L apart, then the sum of diam /,,(C3 B,) for those
A covering the corresponding arcs in 3; must total at least L. So as we do not
have many large jumps, we must have that ), g (5, ,) diamhy,(C3B4) >

%a‘k, where S, (B3;, v) is defined to be the set of all A € S,, sothat w(A) = v
and A N B’ # ¢ for some B’ € B;.

By uniform quasisymmetry diam /,(C3B4) =<c, diamh,(B,4). Putting it
together,

E3D, diam h,(B4)
"(A) = "(A) > .
> M A= Y g Y Dl
AeS, (B;,v) ueTp(v) A€eS, (B;,v) A€eS, (B;,v)
1 Z E3D, diam h,(C3B4)

mya—k+io2g—n

e w;

v

Ca pcsBim
EsDya=* E3D,

= e = —q"
4Cymya—*+jog=n  4Cymyalo

As for each i there are either many large jumps or not, we have:

E3D, J 1
A) > A n
> I A zmam ez 35)

AeS,:ANB#ED weTp(v)
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:E3DU(M+1)( J . 1 )a”

myalo 2C (Ci" v2) 4Cy
(M +1)

(4aj0(C1(CT V2)V Cq)my

> E3ad"D,.

By our earlier conditions on E4, we have that M = |[(m, — ko — k1 — 2jo —
2)/(2jo+ 1)] satisfies M > 1. Thus (M + 1)/m,, is bounded away from zero,
so we can and do require that Ej is large enough depending on jo, C1, CT, Cy4
so that the term in parentheses is at least 1/E3 thus (6.8) holds for v with the
same J. Note that D, = diam A, > diam A, .
Step 3: Suppose v has diam A, > § and all children satisfy (6.8) for some J.
The argument is identical to that of step 2 until we apply the definition of f,
from (4.7), and as we don’t resize the annuli it suffices to consider the largest
annulus Y withi = 0, k = jo+ 1 +ko. We now indicate the slight differences.
Case of many large jumps {8} C Bo: If a given large jump B; has diam Aewj >
(2Cy/J)a™" then

Yoo I = Y i [T el

AeS,: ueTy(v) AeS,:m(A)#v ueTp(w;)
Amﬂmuu,j_);é@ Aﬁﬁﬂij%;éﬂ
E3D, diam hy (A, )
> " n A
=71 diam A, 2 [1 Ai@
wj AeS,:m(A)#v ueTy(w;)
ANy 70
- EsD, 1

== UEJa" diam 1y (A, ).

While if diam Aewj < (2C2/J)a™" then, for the same C} = C7(J) as before

E3 D, diam hU(Aew/_ )

2 [l = I-Cf diam A,, > Il A

A€eS,: ueTy(v) AeS,: ueTo(w;)
Aﬁﬂﬂij% #0 AﬂﬂﬂUw/.%#(ZJ

EsD, .
> 7Ja" diam hv(Aewi ).

1

Summing over all large jumps {8;} C By, as k = jo + 1 + ko we have

Z 1_[ ,(A) > Ly EDy Ja" diam hy (A, )
Pl =cl Laciva) 1 vifen,
Aer C;,j u€To(v) Jj
. E3D, . a—Uo+1+ko)
~Ci(Cfv2 -1 2
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Case of few large jumps {B;} C Bo: The argument is the same, giving the
bound

E3D,diam h,(B4)
R A ESY L
1 - diam By
AeS, (By,v) ueTy(v) AeS, (By,v)
1 Z E3D,diam h,(C3By4)

Z_

4 AeS, (Bo.v) 1 - diam BA

E3Dya—ot1+ko) . E3Dya—Uot1+ko)

> . a.
—  2Cidiam B4 4Cy

As By either has many large jumps or not, we have:

; J 1
2 [T pi)= EsDyamiirty (2C civa ac )an
AES,: ANBAD weTy(v) 1(CT V2 4

( a—Uio+1+ko) )

> E3ad"D,.
4(C1(CTV2)VvCy)

Since D, = diam A, > diam A, , provided E3 is required to be large enough
depending only on jo, ko, C1, CT, C4 we get (6.8) for v with the same value
of J. As this point we fix the value of Ej3.

Conclusion: So we have shown that (6.8) forall v € T.

Suppose now that the curve 8 has endpoints in A,, v € Ty, that are §’
separated, but not necessarily agreeing with A, . By the bi-Holder estimates
on h, for such v, this implies that the distance between the /,-images of the
endpoints of B is > A~1(8")!/T > 0. Notice that in step 3 the location (if
defined) of A,, was not relevant, only that 8 crossed an annulus of width pro-
portional to D,,. So as we already required kg to satisfy a —%0+! < %A‘l ($H/r,
wecanseti =0,k = jo+ 1 + ko and let Y be all points in A, A, at distance
in (a=%, a=**1] from {hy,B(0), hyB(1)}; note that the balls of radius a—k+1
centred on &, A, are disjoint. Step 3 then gives, with the same choice of E3,

> ]I A zJua"p,.

AeS,:ANB#D weTy(v)

It remains to bound £, (8). Since B is in U,_,, we have forany A € S, with
ANB # Pthatw (A) € [vg, v]. Thismeans thatif w € VT has p]} (A) # 1then
w € To(v) or w € [vg, v]. Write {vg, v, ..., v = v} C VT for the vertices
of [vg, v]; these are in Ty. Fori =0, ..., m — 1, we have diam W, 4 <y 1,
so diam h,; Wy, o < 1, and D,, < so there is some constant C " depending on
8’ so that ,ol’}i (A) x¢r E3. Thus, using the trivial bound m < |Ty| and setting
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C; == (C'Ex)/Ty,

LB =Era™ > ] eia)

AeSANBED weVyT

=Ea™" ) (ﬁp:},m))( I1 pLﬂ(A))

A€S,:ANBAY ~ i=0 weTy(v)
_ Ty
> Ea™ Yy (C/E3)|5( [ p,'L(A))
A€S,:ANB#D weTy(v)

> Eja "C;Jd"Dy, > E|C3J8 > 1,

thanks to our choice of £y := 1/(C;‘J8/). |
Admissibility now follows.

Proof of Theorem 6.1 For§ < 8y, let8” > 0be chosen by Proposition 6.2, and
then let £, E3 be given by Proposition 6.7. By Proposition 6.2(2), any curve
y € I's has a subarc y € I'y, which Proposition 6.7 shows has £, (y) > 1,
s0 £y, (y) = £,,(y) = 1. Therefore p, is I's-admissible. O

7 Volume

It remains to bound the volume of the weights p,. For v € VT, recall that
To(v) is the set of v and its descendants in Vo7 Let S, (v) := 7~ X (To(v)),
and 8,?(1)) := 7~} (v). Note that for any v € T we have the partition

S =8wu || Siw). (7.1)
w child of v

We define forv e T,

Va):=Efa™ Y ] el(A)P. (7.2)

AeS, (v) weTy(v)

Observe that the p-volume of p, is, by definition,

Voly(p) = ) pu(A) = E{a™ ) [] oA = Vate). (13)

AeS, AeS, veVyT

The goal of the section is the following, given fixed parameters §', Ey, E3, E3.

Theorem 7.4 We have V,,(vo) = Vol,(p,) bounded independently of n.
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We are going to set up an induction to bound the quantities V,,(v). What is
important here is the relative size of D, and a™": for a given n and v € VyT,
our cover of Uvﬁ by balls of radius a =" is, if we rescale U,_, by 1/D,, like a
cover of U,— by balls of radius a=" / D, and the corresponding p-volume
is scaled by 1/D}. Lett,, = |n + log, D], then the balls in the rescaled
cover are approximately of size a .

When ¢ > ty for some fixed constant oy € Z set below, and t,, , = ¢ for
some n, v, we are covering U,_, by sets significantly smaller than U,_,, and
estimating V,(v) is amenable to induction; the relevant quantity we try to
bound is the following:

Definition 7.5 For ¢t € Z, if t < 1y set ‘7, = 1, otherwise let \A/t be the
supremum of Vj, (v)/D,’f over all n, over all v € VoT\Ty with t,, , = 1.

As an initial observation, for a given ¢ there is an easy uniform bound on
V,(v)/ DY with t, , = t.

Lemma 7.6 For eacht € 7 fixed, V, < oo.

Proof The claim is trivial for < 5. We fix t > 1g.
Suppose for a given n that v € T\Ty has t, , = ¢, 1e. |[n +log, D] =1,
soa"? /DY < a7'P, and

Vi (U) —tp Z 1_[ ,Ow(A)p (7.7)

AeS, weTy(v)

By definition, S, (v) consists of a collection of balls of radius a™" with
centres separated by a~" in U,_, (not quite a cover since balls close to A,
will notbe included). As X is Ahlforsregular, and by Lemma2.10diam U, —, <
diam A, = D,, the number of such A included is bounded above by a constant
depending on D, /a™" < a', i.e., depending only on 7.

For a given w € Tp(v), the only way that p!! (A) # 1isif d(A, Uy) >
E>a™ and w € [v, w(A)]. The first condition and Lemma 2.10 implies that
diam Ay, > a™". The second condition and Lemma 2.11 implies that

a " - diam A,
D, — diam A, —

—t
a =

e—edT(v,w)’

and so d7 (v, w) is bounded by a constant depending on ¢. We have shown that
the number of terms in the sum and in the product on the right-hand side of
(7.7) are both bounded by a constant depending on ¢, and not on 7.

It remains to show that p} (A) is bounded. This follows the argument in
the proof of Theorem 5.1. For those w that are in Ty(w’) for some w’ with
d(A,U_y) < Exa " or myy < 1, then by cases (1) and (2) of Step 3 of the
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proof of Theorem 5.1, p}; (A) < C(E3).Forallotherw,wehaved(A, U,,) >
E>a " andm,, > 1,andby (5.6) in Step 4 of the proof of Theorem 5.1, we have
diam(hy Wy A)/fuw(Wy. 4) < 1/my,. Moreover, by Lemma 2.11 D,, < D,
and diam Wy, 4 > a™", D,/ diam Wy, 4 < D, /a™" < a'. So

EszD,, . diam /1, (W, 4) <4 L <4
diam Wy, 4 SuWya)  — My

pu(A) =

k]

which is a constant bounded in terms of ¢.
So we conclude that V,,(v)/D?¥ is bounded by a constant depending on ¢,
independent of 7. O

We are going to bound V,(v)/ DY in two stages: a general inductive step
using V; when v ¢ Ty, then the finitely-many vertices of Ty will be dealt with
using a weaker bound.

7.1 Volume bounds for v ¢ Ty

The goal of this subsection is to bound v, by induction on ¢, and thus to bound
V,,(v) for v ¢ Ty. In fact, we show more.

Proposition 7.8 lim,_, Vt =0.

There are two kinds of contribution to V,(v), those coming from A, and
those coming from U,,_, for some child w of v. Now for fixed n, a child w
of v usually has A,, smaller than A,, and so t,, , < ., and we can use an
inductive bound to estimate the contribution of each child to V,,(v); we have
to treat carefully the finitely many children that are exceptions.

Note that if S, (w) # @ for w a child of v, then there exists A € S, (w) so
m(A) is a descendant of w, therefore by (2.13) and Lemma 4.1 diam A,, >
Kls diam Az 4) > ﬁa‘”. Thus in the induction we are only interested in
finitely many w: let

1
Cv) = {w child of v ; diam A, > —

a_n} c WT.
5K7

For sucha w, t,, , = |n + log, diam A,,| > |—log K5K7]; let
to ;= |—log KsK7].

In our induction, the problem is that a child w of a given v € T may have
tw.n >ty n. However, by Lemma 2.11(2.13) for

ta i =logKs+1>1
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ifw e To(v) thenty, , < t,, +ta. To set up the induction, we group together
the finitely-many large descendants of v, where “large” depends on a parameter
g <ta:let

L, q) :={w e To(w)\{v} : Ju € To(w), tyn = tyn —q})
U (Ty N (To(v)\{v})), and
L, q) :=L"(v,q) NC(v).

Note that as v ¢ Ty, Ty N (To(v)\{v}) = @, but we will also use these
definitions of L£*(v, ¢), L(v, q) later for more general v. There are uniform
bounds |L(v, ¢)| < |L*(v, q)| < C(ta, 8') forany v € T:by (2.13) |L*(v, g)|
is bounded by the sum of |7y | and the number of spaces Z,, C Z which can
meet a ball of a radius depending on to and Ks5. In the remainder of this
Sect. 7.1, v ¢ Ty.

Write L(v) := L(v, 0), L*(v) := L*(v, 0). For each t € Z define

\7<t = maX{Vs 18 < t},

and note that we immediately have:

Lemma?7.9 Fort = t,, = |n + log, D,], if w € C()\L(v) then
\fn(w)/D{Z < \7<,. More generally, if w € C(W)\L(v, q), then V,(w)/DE <
Vei—g)-

If D, is too close to a~" there isn’t space to do induction, so we fix
ty =t 712 +log,(21))] € N (7.10)

For any v € T with t,, , > t(/), Ty, > my > 1 by (4.4), and therefore we
have that not only is |m, — ¢, ,| bounded by a universal constant, but also
1/C <my/tt, , < C for some universal C > 1, i.e.

my X tth,, and m, X Tt ,. (7.11)

Our main technical bound in this subsection is the following.

Proposition 7.12 There exists C depending on ta and the data of our con-
struction so that for any v ¢ Ty witht 1= t,, > ty and any g < ta, we
have

Vi (v) C 5 C Vi (w)
TR R D Dl
v weL(v,q) w
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Proof We decompose V,,(v) as follows:

Va) = Efa™ > T (A

AeS, (v) weTy(v)

= Ela™P Z P (A)P
AeS0(v)
(7.13)

@
+Efa Yy Yy s [T enar.

weC() AeS, (w) ueTy(w)

an

and we proceed to bound (/) and (/1) in the following lemmas, whose proofs
we defer. (Recall that our parameters E, E», E3, 8’ are now fixed constants.)

Lemma 7.14 There exists C so that for any v ¢ Ty witht = t,, > t; we
have

p
(I =zca™"+—; .
ny

Lemma 7.15 There exists C depending on ta so that for any v ¢ Ty with
1=ty >ty and g < ta we have

)
D Vaig) | pp )3 RENICON

p—1 14 14
my weL(v.g) T Dy

(II) =ca "’ +

We now combine these bounds. By (7.13) and Lemmas 7.14 and 7.15:

Vi (v) 1 a " 1 Vy(w)
= + —t+—— t+ Ve - + Z — .
P e p p q —1 ml p
D, Dy my D, wel.q) ™ Dy,
Ast =ty > t(’) we have (7.11), so we can write this as
V,(v) —tp 1 1 V,(w)
= Tt 1V<(f—61)+t_p Z P
v weLl(v,q) w
1 - 1 V. (w)
ﬁ [p_l V<(f—q) + _]7 Z D )
weLl(v,q) w
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where we use that ‘7<(,_q) >1,s0

_ _ 1 1
a tp <a Tip < t_p < l,p__lv<([_q)'
We have completed the proof of Proposition 7.12. . O
Proposition 7.12 applies as follows to prove that lim; .~ V; = 0.

Proof of Proposition 7.8 Note that by Lemma 7.6, for t € Z with g <t < 1

we have V, < 00, so we can restrict to values of t > 1, where Proposition 7.12
applies.

Our goal is to bound V,,(v) / D} in terms of Vi, by applying Proposition7.12
boundedly many times. As the first step, Proposition 7.12 for v and g = 0 gives:

Vn(v) < C - C Z Vn (IU)
p — pfl <t _]7 7
Dy f f weL(v,0) Dy

Now consider w € L(v, 0); some descendant u of w has#, > t,, ,, 80, , >
tyn —ta,and also ty, , <ty , +ta. Ifty , <ty pthenasw € C(v), tyn > 1o
so V, (w)/D,’; < \A/tw,n < ‘7<,. If ty).n > ty.n, apply Proposition 7.12 to w with
q =tyn—tyn =< IA toget

Vo(w) C c Va(w')
Dp = p—1 V<(tqu_q) + D Z Dp
w tw.n tw,n w'eL(w,q) w’

where C is the constant from Proposition 7.12. Note that L*(w, g) C L*(v, 0)
so these sums are getting smaller. If any w’ has t,y ,, < ty, —q = ty.n We

bound V,,(w’)/ Di , < V_,, otherwise we apply Proposition 7.12 to w’ with

9

q"= ty n — (twn — q) = ty n — by, to bound the term, and continue this
process. Note that any summand V,,(w”)/ DZ , that appears has w” € L*(v, 0)
and appears once. Since L£*(v, 0) has a uniform finite bound on its size, after
boundedly many steps this process terminates when there are no more vertices
w” with t,,» , > 1, ,. At the end we have

Vn(v)< Cc -
DY~ tp-l

<t

for a constant C’. Taking the supremum over all n and all v with #, , = ¢, we
get

/

A A

Vi < tp—_1V<t,
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so for ¢ large the sequence Viisa decreasing function of 7, hence the sequence
is uniformly bounded, and by the same inequality lim;_, o, V; = 0. O

We still have to prove the technical bounds of Lemmas 7.14 and 7.15.
7.1.1 Bound (I)

Proof of Lemma 7.14 We further split S,?(v) = Rw) U R(w)° where R(v)
consists of those A € S,?(v) with d(A, U_,) > Eya™, and R(v)¢ =
SPWN\R(v).

(D=E{a™ 3 py(AP +E{a™™ Y pj(A)
AeR(v)¢ AeR(v)

diam h,(By) - Dv)p

=a " R |+a Y ( :
ACR() diam By - fv(BA)

(7.16)
as for A € Sg(v), Wy.a = Ba. Lemma 2.9 gives that any A € R(v)“ is a
distance < K3E>a™" to A,,, so the doubling property of X gives

IR(v)‘| < C = C(E2, K3). (7.17)

The value of f,,(B4) depends ond,(hyBa, hyAe,), and so we write R(v) =
R, DHu---UR(v, my) UR(, my + 1) where

R(v. j) == {A € R(v)  dy(hyBa. hyAe,) € (@ a™iT1]),
forl < j <myand R(v, my+1) = {A € R(v) : dy(hyBa, hyA,,) < a ™}

So, pulling out for now the common factor a~"” DY, the second term of (7.16)
is

Z ( diam h,(By) )p
ASRes) diam By - fy(Ba)
my+1 di p
IZ Z < iamh,(Ba) )
Py diam By - fy(Ba)

(diam hv(BA))Q11+I7_Qv
Z a=" .1

=

AeR(v,my+1)

My 1 Ov+p—0y
+Z Z (diam K, (Ba)) . (7.18)

_ p
- . a "P’mya—JP
J=1 AeR(v,)) v
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Recall that by (4.3), diam h, B4 < a="v /2. Since S, is a bounded multiplicity
cover of X and each By C (K7 4+ 1)A the collection {B4 : A € S,?(v)} has
bounded multiplicity, with constants depending only on X. Thus {h,B4 : A €
S,?(v)} is a bounded multiplicity collection of quasi-balls, and so the Ahlfors
Qy-regularity of X, gives, for 1 < j <m, + 1,

3" (diam hy(B4))@? diam hy (Ba)? =
A€R(v,j)
< Z (diamhv(BA))Qva*mu([)*Qv) (719)
A€R(v,j)
< a—(j—l)Qv A a_mv(P_Qv)‘

So when j = m, + 1 the right-hand side is a ~?"*». By (7.19) the second term
in (7.18) sums to

) i a=U=D0u . g=mu(p=00)  g=mu(p=Qu)tnp %aj(p—gv)
= P —jip - p

4 a "P’mya— my O
—my(p—Qy)+np np
a v _ a
X a™(P=Qv) — —- (7.20)
ny my

Combining (7.16), (7.17), (7.18), (7.19), (7.20) and a—P"» < l/mg we have

D =a+apr (N Sy pr. L g0
— v a=—"P mg — v mg ‘ ‘
O

7.1.2 Bound (II)

Proof of Lemma 7.15 Note that we are considering A € S, (w) for some w €
C(v),i.e. m(A) equals w or adescendant of w, therefore W), 4 = A = A,
in this proof.

Let us denote by (I Ia) the contributionto (/ /) by w € C(v) and A € S,(w)
with d(A, U—y) < Era™. For such w, A by Lemmas 2.7-2.10 we have

ev—>A

Y 2.10 . 10 .
a " <diam A, X< diamA,, =< min{diam A, ,diam A}
2.7 2.8 _
= d(Aew, Aeu) = d(U<—v7 Uw—>) Sd(U<—v, A) <a n’

so all such w have diam A, < a " andalsod(A, A,,) < a~" by Lemma 2.9.
By doubling and the separation property of Lemma 2.7 there are < 1 such w.
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Moreover, p}(A) = 1 and p}/(A) = 1 forallu € Ty, since Uy, C Uy 50
d(A,U—,) < Eya™". So the total contribution to (I 7) by w, A as above with
d(A,Uy) < Era™"is

(Ila) <a™". (7.22)

So in the remainder of this proof we only need to consider w € C(v) and
A€ S,(w) withd(A, U—y) > Era™".

In case (1) above we partitioned A € S,? (v) according to the distance values
dy(hyBa, hyA,,); this time we partition the set of children of v according to
both their distance d, (hy A, , hyA,,) and their size diam &, A, in the model
space X,. We defined L(v, g) C C(v) to be, depending on ¢, those children
with large descendants, and will consider their contribution in (//c) below.
For1 < j <my,and 1 < k we partition the remaining children as follows:

Cv.q.j.k) = {w € CONL(, q) & dy(hyAey, hyle,) € (@, a=F1],

and diam hyA,, € (a_k,a_k+l]},

and we define C(v,q, j, k) similarly when j = m, + 1, replacing
(a=mvtD g=m] by (0, "] in the appropriate place.

There exists ka so that if j > k 4 ka then C(v, g, j, k) = () because
Lemma 2.7 gives a lower bound on the relative distance between A, and
Ae,, and so there is a uniform lower bound on the relative distance of h, A,
and hy, A.,, since h, is n-quasisymmetric for uniform » [1, Lemma 3.2].

Also, as already remarked, C(v) is finite so only finitely many C(v, ¢, j, k)
are non-empty.

Having this notation, we bound the terms of (/) not in (I [a) as follows:

Efa™ Y > e T ey

weC(v) A € Sy(w) ueTy(w)
d(U_y, A) > Eza™
- diamhy(Ae,) E3Dy \”
— EPg Lt u (AP
fa™r Y. > ( diam A,,  fu(Ae,) [T eico
weC(v) AeS,(w) ! ' uetotw)

d(U—y, A) > Era™"

0o (my+DA(k+ka) a~kry (w)
» L ni
(X

=D 7
Dy fo(Ne,)?

k=1 j=1 weC(v.q.j.k)

(I1b)

(diam £y (Ae,, )P Vi (w)
"> DY fo(Ae,)P ) (7.23)

weL(v,q)

(Ilc)
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844
We now use that v ¢ Ty. Dropping for the moment the constant D}, we

decompose (/1b) as
0o myA(k+ka) —kp
a PV, (w)
am=y Y < )
j=1 weC(v,q,j,k) whtyd
P Va(w) (7.24)

’

a
Z ’ DP .1

+
=1v(my—ka+1) weC(v,q,my+1,k)
)= 1if j = my + 1 and

Mz

where we use th_at forw € C(v,q, j, k), fu(Ae,
fo(Ae,) = mya’ if j <m,
In (7.24), each w considered is not in L(v, ¢), S0ty n <tyn —q¢ =t — 4,

so by the definition of \7<(t_q), (7.24) is at most
akp
(7.25)

oo myA(k+kp)
pa*.iﬁ

(Z Z wecg;jk) My

[o¢]
> > et )iy

+
k=1v(my—ka+1) weC(v,q,my+1,k)

Now by a volume estimate, for each j, k,
kQy ,—k(p—Qv)

> ahe ¥

weC(v,q,j,k)
(diam 1, (A,,)) Cra*P=Qv

weC(v,q,j,k)
= X
weC(v,q,j,k)
< q Qv k(p—0v) (7.26)
So (7.25) is at most V_ ;) times
o0 MmN KFKA) | —jQu —k(p—0Qu) 0
3 a + —(mu+1)Qu —k(p=Qu)
mba—ir
k=1 j=I k=1V(my—ka+1)
1 ml—kA 1 o0
_ k(p=Qv) ;=k(p=Qu) a"Mv(P=Qv) ;—k(p=0y)
e oy ‘
My = U k=my—ka+1
o0
+ Z a—muQra_k([’_Qv)
k=my—ka+1
1 my—ka 1 [ee) 00
—_ _ —(k—my)(p—0y) —my Qu—k(p—Qy)
Ly Loy fY
Vook=1 YV ok=my—kpa+1 k=my—ka+1
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1 1 1
+ — +a*vav*mv(P7Qv) < pa
ny my

(7.27)

- -1
my

where the implied constants depend on ks, p — Q, and our other data.
It remains to bound (/Ic¢) from (7.23). We now show

(diamhv(Aew))p Vi (w) 1 Vi (w)
Iloy= ) fheyr Dr S > R

(7.28)

weL(v,q) weL(v,q)

This is true because if w € L(v,q) we have t,, > t, — q — ta > t, — 2tp,
thus diam A, =< diam A, and so by (4.3) diam h,(A.,) =< 1. Moreover
d(Ae,, Ae,) > diam A, by Lemma 2.7. By uniform relative distance distor-
tion of quasisymmetric maps, we then get that d, (hy A, , hyAe,) is bounded
away from O for a uniform constant. In the case d,(hy A, , hyAe,) < a™™
then m, is bounded from above, so by (7.11) m, =< 1, thus f,(A¢,) =
1 < my. On the other hand if dy,(hyA., . hyAe,) = a ™ then f,(A,,)
mydy(hyAe, , hyAe,) > my. In either case (7.28) holds.
So in total, (7.22), (7.23), (7.24), (7.25), (7.27) and (7.28) give

(I1) = (I1a) + DY ((11b) + (I1c))
1 Va(w)

my D,

N 1
ny weLl(v,q)

7.2 Volume bound for v € Ty

For the boundedly many vertices in Ty, our bound of Proposition 7.12 need not
hold, however the following weaker bound does hold by a similar argument.

Note that for all large enough n, for any v € Ty we have 1, , > 1) where
is the constant of (7.10), since £, , & n. So we assume from now on that for
all v € Ty we have tt > m, > 1 and so (7.11) holds as well: m, &~ tt and
my X Tt.

Proposition 7.29 There exists C depending on tp and the data of our con-

struction so that for any v € Ty and any q < ta, we have

V. (v) A
”Dp <CVigg+C Y.

v weL(v,q)

Vi (w)
D
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Proof We follow the proofs of Proposition 7.12 and Lemmas 7.14 and 7.15 in
Sect. 7.1, but consider the case v € Ty .

Recall that by (7.13) we can write V,,(v) as two sums, (/) where A € S,?(v),
or (1) where m(A) is in S, (w) for some child w € C(v). These are bounded
as follows; we defer the proofs until later.

Lemma 7.30 There exists C so that for any v € Ty we have
(]) <c a” P + Dll)’a*mu(P*Qv).

Lemma 7.31 There exists C depending on tp so that for any v € Ty and
q < ta we have

Vi (w)
Db

(D) =ca™ +DV_gg+ DI >
weL(v,q)

We now combine (7.13), Lemmas 7.30 and 7.31 to find:

V(v a= " N Vi (w
:)(p) = Dp + afmv(prv) + V<(l—q) + Z I’ll)(p )
v v weL(v,q) w
N Vo (w
— q"tp +a—rt(p—Qv) + V<(tfq) + Z n(p)
weLl(v,q) w

N V. (w)
= <(t—q) + Z - s

p
weLl(v,q) Dw

where we use that m, &~ t¢ and V<(,_q) > 1. The proposition is proven. O
7.2.1 Bound (I)

Proof of Lemma 7.30 We follow the notation and proof of Lemma 7.14. The
argument begins identically with (7.16) and (7.17).

Instead of decomposing R (v) C S,? (v) to find the bound (7.18), we instead
use the simpler fact that {h,B4 : A € 8,? (v)} is a bounded multiplicity
collection of quasi-balls in the Ahlfors Q,-regular space X,. Therefore, as
fv(By) = 1, we have:

. p
Z (d dlal’;lhv(BA; > =< anp Z (dlam hUBA)QU_’_(p_QU)
ARy \diam Ba - fu(Ba) ACR W)

S anpa—mu(P—Qv) Z (dlam hvBA)QU
AeR(v)
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< a"l’a—mv(P—Qv)‘
so instead of (7.21) we have

(I)<a™ +a™"" DP <anpa—mu(p—Qv>> — a4 PP (P=Q0),

7.2.2 Bound (II)

Proof of Lemma 7.31 We follow the argument and notation used in the proof
of Lemma 7.15.

As before, (I 1a) satisfies the bound of (7.22). We write the remaining terms
as D{((11b) + (I1¢)) as in (7.23). Since f,(A,) = 1, the bound (7.24) for
(11b) is replaced by the following (again we drop for the moment the constant
DP):

oo (my+1)A(k+ka)

—k
amy =3 Y 3 %. (7.32)
k=1 =1 w

weC(v,q,j,k)

In (7.32), each w considered is notin £L(v, g), S0ty n < tyn —q =1t —q,
so by the definition of V), (7.32) is at most

( 0o (my+DAk+ka)

Now the volume estimate (7.26) gives for each j, &,

Z (,l_kp < a_ija_k(P_Qv),
weC(v,q,j,k)

> a—kp> Veti—g) (7.33)

weC(v,q,j,k)

so (7.33) is at most
oo (my+DAk+ka)

oo o
=1 o k=1 j=1

= \7<(z—q)-
So in total, (7.22), (7.23), (7.32), (7.33), and the above give

(II) = (I1a) + DY ((I11b) + (I1c))
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<a™" 4+ DPV__g+ DP - (I1c),

where, as diam 4, (A, ) < 1and f,(A,,) =1

Cy

(IIc) = Z (diam /1y (A, )" Va(w) _ Z Vn(w)'

fo(Ae,)P D D,

weL(v,q) weL(v,q)

7.3 Uniform volume bounds

We can now complete the proof that V,,(vg) is bounded independently of n.

Proof of Theorem 7.4 Our goal is to bound V;,(vg) =< V,(vo)/ Dfo indepen-
dently of .

First we apply Proposition 7.29 with v = v, t = )., < n,q = 0 (addi-
tionally, # &~ n) to bound V,,(vo) by

Vi (w N Vi (w
V(v())<V<zU0”+ Z ( )SV<n+ Z n(p)

weL(vg,0) w weL(vg,0) w

For each w on the right-hand side which is in Ty, we apply Proposition 7.29
toit (withv =w,t =1, , <n,q = 0) to get a bound

V(w) i Y V(u).

uel(w,0) ”

There are boundedly many vertices in Ty, so after doing this step to each such
term, we have that

Vi(vg) < V<n +Z Y (M)

M

where each u in the sumis notin Ty, but does have that A, has size comparable
to §’. Therefore there is a uniform bound on how many such u appear, and by
definition Vn(u)/D,f < 17<(n+1) since t, , < n.

In conclusion, we have found that

Va(vo) < C‘7<(n+1)

for some C independent of n, and this is bounded as by Lemma 7.6 and
Proposition 7.8 sup, .7 V, < 00. |
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8 Attainment of conformal dimension

In this section we characterise when the conformal dimension of a hyperbolic
graph of groups with elementary edge groups is attained. The key concept we
use is porosity.

Definition 8.1 A subset Y of a metric space X is porous if there exists ¢ > 0
so that for any y € Y and r < diam(X) there exists x € X with B(x, cr) C
B(y,r)\Y.

Under mild hypotheses, porosity is preserved by quasisymmetric homeomor-
phisms.

Lemma 8.2 (cf. [41, Theorem 4.2]) If X is a uniformly perfect metric space,
andY C X is porous, and f : X — X' is a quasisymmetric homeomorphism,
then f(Y) C X' is porous.

Proof Given B = B(y',r’) ¢ X' with y’ € f(Y) and r’ < diam X', since
f~1is quasisymmetric there exists 7 > 0 so that B = B(f~1(y), r) satisfies
B C f~Y(B’) c AB, where A > 11is a constant depending only on f. Since ¥
is porous, there exists B(x, cr) C B\Y.Now f(B(x,cr)) C f(B) C B, and
by quasisymmetry there exists " > 0 with B(f(x),r”) C f(B(x,cr)) C
B(f(x),Ar").Since B(x,cr) C B\Y, B(f(x),r"”) C B’\ f(Y), soit remains
to show that " /r’ > ¢’ > 0 for a constant ¢’.

In a uniformly perfect space, the radius of any ball is comparable to its diam-
eter (indeed, this is an equivalent definition) up to some uniform constant C. So
by [22, Proposition 10.8], since B C f~'(B’) and diam B =< diam f~!(B)
we have diam f(B) =< diam B’ =< r’. Thus again by [22, Proposition 10.8],
writing 71 : [0, c0) — [0, oco) for the distortion function of f,

r’ _ diam f(B(x, cr)) - 1 1

r diam f(B) - 277( diam B ) = n(C2%/c) >0

diam B(x,cr)
O

We will use the following criteria for non-attainment of Ahlfors regular con-
formal dimension, likely well known to experts in the area.

Proposition 8.3 Suppose there is a metric space X with a subset Y C X that
is porous, so that the (Ahlfors regular) conformal dimensions of Y and X are
equal (and finite). Then the conformal dimension of X is not attained.

Proof Suppose otherwise, and that f : X — X’ is a quasisymmetric map
with X" Ahlfors regular of dimension Confdim X. Since X’ is Ahlfors reg-
ular it is uniformly perfect, and so is X = f~!(X’). Then f(¥Y) C X' is
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porous by Lemma 8.2 above, so its Assouad dimension satisfies dimy f(Y) <
dimy X’ = Confdim X [17, Lemma 5.8]. For any Q > dimy f(Y), f(Y)
is quasisymmetric to an Ahlfors Q-regular space [22, Theorem 14.16], so
choosing QO € (dimy f(Y), Confdim X) we get that ConfdimY < Q <
Confdim X, a contradiction. O

A useful tool for identifying porous subsets is the following.

Proposition 8.4 Suppose H is a quasiconvex subgroup of a hyperbolic group
G. Then the following are equivalent:

(1) the limit set AH is porous in dG,
(2) AH C 050G is a proper subset, and
(3) H is infinite index in G.

Proof The implication (1) = (2) is trivial. Likewise, (2) = (3) is straight-
forward: if [G : H] < oo then there is a bounded fundamental domain for the
action of H on a Cayley graph X for G, and so for some constant C, every
point of X is within a distance C of H C X, and thus AH = 050X = 0xG.

It remains to show (3) = (1). We fix a Cayley graph X for G. Since H
acts freely on G, the quotient H\X is a regular graph of bounded degree,
with a vertex for each right coset Hg. As [G : H] = oo, H\ X has infinite
diameter, and so we can find a sequence of points g; € G C X, i € N, so that
d(H, gi) — oo asi — oo. Suppose for each i that h; € H C X is a closest
pointin H to g;. Let y; : [0, d(h;, gi)] = X be a geodesic from A; to g;. By
the choice of h; foreach ¢t € [0, d(h;, gi)], d(yi(t), H) > t. Let §; = hi_lyi,
sothat 8; (0) = 1, and still for each ¢ in the domain of each §;, d(H, B; (t)) > t.
We apply Arzela—Ascoli to the sequence of maps (3;) to find a subsequence
that converges uniformly on compact intervals toamap 8 : [0, c0) — X. This
map S will be a geodesic ray, and will inherit the property that d(8(¢), H) >t
forall r € [0, 00).

Now to show porosity: fix a visual metric p on doc X = 0scG, With visual
parameter € > 0 and constant Cy, so that p(x, y) =c, e <M1, Suppose H
is C2-quasiconvex: any geodesic with endpoints on H lies in N¢, H; this will
also be true for a geodesic ray from 1 € H to a point of A H. Finally, write §x
for the hyperbolicity constant of X.

We want to find ¢ > 0 so that given y € AH and r < diam(0cX), there
exists x € dX with (i) for any y/ € AH, p(x,y’) > cr, and (ii) for any
x' € 000X with p(x,x") <cr, p(x’,y) <r.

We will set ¢ = e~€(41742) where A and A, are parameters depending
only €, C1, C2, §x found below. Given y € AH and r < diam d X, fix a
geodesic ray o from 1 representing y. Consider the point of « at distance
_?1 logr + Aj from 1, and let &~ € H be a point within C, from that point. Let
X € 000X be the limit point of h8.
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Fig. 6 The configuration of T z
the points x, x’ and y, with a
potential location for y’
H Y
1 @ / Y
\ h

We show that (i) holds. For y/ € AH, if p(x,y’) < e €A1+42p then
(x|y"H1 > _?1 logr+ A1+ Ay — Cs for some C3 = C3(€, Cy), so the geodesics
from 1 to x and to y’ stay 28x-close for all times up to this value. But this
is a contradiction for large A, since the geodesic from 1 to y’ lies in N¢, H,
while at times t > _?1 log r + A1, the geodesic from 1 to x has distance at least
t — (—e 'log(r) + A1) — C4 from H for C4 = C4(8x, €, C1, C2). See Fig. 6.

We show that (i) holds. If p(x, x") < cr = e €A1+42) then (x|x’); >
_?1 logr+ A1+ Ay — Cs. If Aj is large enough, the tree approximation to 1, ,
x and x’ must look like Fig. 6. In particular, (x’|y); equals _Tl logr+Ajupto
an additive error Cs. Thus p(x/, y) < Cire €W < Cle=41¢¢C5r, Provided
Ay is chosen large enough depending on C1, €, Cs, we have p(x/, y) < r as
desired. m|

As an aside, this implies that hyperbolic groups which attain their conformal
dimension satisfy a kind of “co-Hopfian” property; compare the variations
discussed in Kapovich-Lukyanenko [27] and Stark—Woodhouse [38]. (The
second author thanks Woodhouse for asking him this question.)

Corollary 8.5 If G is a hyperbolic group, and 05, G attains its (Ahlfors regu-
lar) conformal dimension, then no finite index subgroup of G is isomorphic to
a quasiconvex infinite index subgroup of G.

Proof Suppose Hi, Hy < G are isomorphic (indeed, it suffices that they are
quasi-isometric) with [G : H{] < oo and [G : H;] = co. By Proposition 8.4,
A H> is porous in d,,G. But A H> and 0,,G are quasisymmetric, and hence
each attains their conformal dimension, which contradicts Proposition 8.3. O

We return to our main goal, of characterising the attainment of conformal
dimension for a hyperbolic graph of groups with finite or 2-ended edge groups.

Proof of Theorem 1.7 Suppose G is a hyperbolic group so that Confdim d,,G
is attained, and with a graph of groups decomposition over finite or 2-ended
subgroups.
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If Confdim 0, G = 0 then G is virtually free by Stallings—Dunwoody, and
as the conformal dimension is attained G is 2-ended, see e.g. [34, Theorem
3.4.6]. If Confdim 0,oG = 1 is attained, then G is virtually a cocompact
Fuchsian group by, e.g., a result of Bonk—Kleiner [2, Theorem 1.1].

We are left with the case that Confdim d,oG > 1 is attained, and so by
Theorem 1.1 is equal to Confdim d,,G; for some vertex group G;. Let T be
the Bass—Serre tree for the given graph of groups decomposition G. Each vertex
of T is stabilized by a conjugate of a vertex group. If 7 has infinite diameter,
then there are infinitely many such vertices stabilized by conjugates of G;,
each corresponding to a left coset of G;, so [G : G;] = 00, but this contradicts
Proposition 8.3. So T has finite diameter.

If there were any loops in G then T would have infinite diameter, so G must
be a tree. Consider a leaf of G where the vertex group is G, and the adjacent
edge group G.. Let x, y € T be vertices stabilized by G; and G, respectively,
and y C T the simple path connecting them.

If the injection i, : G, — G, has proper image, then the index [G, :
i(Ge)] = 2,50 y has degree > 2, and there is an element g; of G, < G which
fixes y but moves the rest of y. Since Confdim dooG; > 1, the edge groups
adjacent to G; have infinite index in G;, so again there is an element g, of
G; C G which fixes x but moves the rest of y. Alternating g; and g, one
shows that 7' contains an unbounded line and hence has infinite diameter, a
contradiction.

So the injection i, : G, — Gy is an isomorphism, and we can remove v
and e from G without changing G. We continue to do this process, removing
leafs, until only G; is left, and thus G = G;. O
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