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Abstract We study the (Ahlfors regular) conformal dimension of the bound-
ary at infinity of Gromov hyperbolic groups which split over elementary
subgroups. If such a group is not virtually free, we show that the confor-
mal dimension is equal to the maximal value of the conformal dimension of
the vertex groups, or 1, whichever is greater, and we characterise when the
conformal dimension is attained. As a consequence, we are able to charac-
terise which Gromov hyperbolic groups (without 2-torsion) have conformal
dimension 1, answering a question of Bonk and Kleiner.
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1 Introduction

1.1 Overview

The conformal dimension of a metric space, introduced by Pansu, is the infi-
mal Hausdorff dimension of all the quasisymmetrically equivalent metrics on
the space. It is a natural quasisymmetric invariant, and is connected to the uni-
formisation problem of finding an optimal (“flattest”) metric for a given space.
Since the boundary at infinity ∂∞G of a Gromov hyperbolic group G carries
a canonically defined family of metrics that are pairwise quasisymmetric, the
conformal dimension of ∂∞G is a well-defined quasi-isometric invariant of
G. The initial motivation for the introduction of this invariant by Pansu in [35]
was in the study of the large scale geometry of negatively curved homoge-
neous spaces, for which the conformal dimension can be computed explicitly.
However, in general it is an invariant that is very hard to compute. Despite this
difficulty, it has found applications in other areas of geometric group theory
and dynamical systems. These include the work of Bonk and Kleiner on the
rigidity of quasi-Möbius group actions [2]; the works of Bonk and Kleiner [3]
andHaïssinsky [21] on Cannon’s conjecture and the boundary characterisation
of Kleinian groups; the works of Haïssinsky and Pilgrim on the characterisa-
tion of rational maps among coarse expanding conformal dynamical systems
on the 2-sphere [23]; the works of Bourdon and Kleiner focussing on the rela-
tions between the �p-cohomology, the conformal dimension, combinatorial
modulus, and the Combinatorial Loewner Property [5,6]; and the works of
the second author on conformal dimension bounds for small cancellation and
random groups [31,32], as well as further connections to actions on L p-spaces
[8,16]. We refer the reader to the survey [34] for the basic theory of conformal
dimension and its first applications.

In this paper we compute the conformal dimension of a hyperbolic group
that splits as a graph of groups with elementary edge groups in terms of the
conformal dimensions of the resulting vertex groups. Throughout the paper,
an elementary (sub)group is a group that is finite or 2-ended, i.e., virtually Z.
Unless otherwise indicated, by ‘conformal dimension’ we mean the nowmore
commonly studied Ahlfors regular conformal dimension, see Definition 3.1.

Theorem 1.1 Suppose G is a hyperbolic group, and we are given a graphs of
groups decomposition of G, with vertex groups {Gi } and all edge groups are
elementary. Then if G is not virtually free,

Confdim ∂∞G = max
{
{1} ∪ {Confdim ∂∞Gi : Gi infinite}

}
.

This theorem enables us to resolve a question of Bonk and Kleiner
[3, Question 6.1], characterising those hyperbolic groups which have con-
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Conformal dimension and splittings 797

formal dimension equal to one (under the mild assumption of no 2-torsion).
The conformal dimension of the boundary of a hyperbolic group is either
0 or one of a dense set of values in [1,∞), and the groups whose bound-
aries have conformal dimension 0 are exactly the virtually free groups (by
Stallings–Dunwoody, see e.g. [34, Theorem 3.4.6]). Bonk and Kleiner’s ques-
tion therefore asks for a classification of the next fundamental case: conformal
dimension 1. Additional motivation for their question comes from the problem
of understanding which hyperbolic groups attain their conformal dimension
(see Sect. 1.2): since Bonk–Kleiner had previously classified those hyper-
bolic groups attaining conformal dimension 1, one can view our answer to
their question as characterising those hyperbolic groups which have confor-
mal dimension 1, but do not attain it. In a different direction, as we discuss
below, our work here also gives new kinds of self-similar metric spaces having
conformal dimension 1.

Corollary 1.2 If G is a hyperbolic group with no 2-torsion and not virtually
free, then Confdim ∂∞G = 1 if and only if G has a hierarchical decomposi-
tion over elementary edge groups so that each vertex group is elementary or
virtually Fuchsian.

Let us now consider these results in more detail. The case of Theorem 1.1
when all the edge groups are finite is well known in the field (a proof may be
found in the first author’s thesis [11, Theorem 6.2]).

Theorem 1.3 If G is an infinite hyperbolic group with a finite graph of groups
decomposition where the vertex groups are {Gi } and the edge groups are finite,
then

Confdim ∂∞G = max{Confdim ∂∞Gi : Gi infinite},
where max ∅ = 0.

In light of this result, Theorem 1.1 reduces to the following:

Theorem 1.4 Suppose G is a hyperbolic group with a graph of groups decom-
position of G with vertex groups {Gi } and all edge groups 2-ended, then if G
is not virtually free,

Confdim ∂∞G = max
{
{1} ∪ {Confdim ∂∞Gi }

}
.

Proof of Theorem 1.1 The lower bound for Confdim ∂∞G is immediate: if we
have Confdim ∂∞G < 1 then Confdim ∂∞G = 0 and G is virtually free (see
e.g. [34, Theorem 3.4.6]), thus Confdim ∂∞G ≥ 1. In addition, each Gi is a
quasiconvex subgroupofG so each infiniteGi has ∂∞Gi is quasisymmetrically
embedded in ∂∞G, therefore Confdim ∂∞G ≥ Confdim ∂∞Gi .
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798 M. Carrasco, J. M. Mackay

For the upper bound, amalgamate all edges with infinite edge groups to get a
less refined graph of groups decompositionG′, where the conformal dimension
of the new vertex groups has the bound from Theorem 1.4. Then as all edge
groups in G′ are finite, the upper bound follows from Theorem 1.3. ��
Particular cases of Theorems 1.1 and 1.4were known before. Keith andKleiner
in unpublished work [25] and Carrasco [13] showed that if ∂∞G has well
spread local cut points (“WS” for short), then ∂∞G has conformal dimension
1. By saying ∂∞G has WS we mean that for some (any) fixed metric in the
family, for any δ > 0 one can delete finitely many points from ∂∞G so that
all remaining connected components have diameter at most δ.

As Theorem 1.1 applies whether WS holds or not, we can complete the “if”
direction of Corollary 1.2 characterising which hyperbolic groups have con-
formal dimension one. The “only if” direction of Corollary 1.2 follows from
work of the second author showing that hyperbolic groups with, for example,
Sierpiński carpet or Menger sponge boundaries have conformal dimension
greater than one, and an accessibility result of Louder–Touikan [29].

Proof of Corollary 1.2 SupposeG admits a finite hierarchy of graph of groups
decompositions over finite and 2-ended subgroups, ending with vertex groups
that are elementary or virtually Fuchsian; such groups have conformal dimen-
sion at most 1. Since G is not virtually free we have Confdim ∂∞G ≥ 1, and
by repeatedly applying Theorem 1.1 we have that Confdim ∂∞G ≤ 1.

Now for the converse, suppose Confdim ∂∞G = 1. As G has no 2-torsion,
[29, Corollary 2.7] implies that we can find a finite hierarchy for G as follows:
by Stallings and Dunwoody we can split G maximally over finite edge groups
leaving finite or one-ended vertex groups, then take the JSJ decomposition of
the one-ended (hyperbolic) vertex groups, maximally splitting over 2-ended
subgroups, then repeat the Stallings–Dunwoody splitting for any vertex group
with more than one end, and so on, repeating finitely many times until all the
vertex groups remaining are either elementary, virtually Fuchsian groups, or
one-ended groups that do not split over a 2-ended subgroup.

Each vertex group is quasiconvex in the original group G as all splittings
were over elementary subgroups. The third case of one-ended, non-virtually
Fuchsian groups with no splittings over a virtually Z subgroup cannot arise,
as such groups have conformal dimension > 1 by [30, Corollary 1.3]. ��
Remark 1.5 Corollary 1.2 holds also with the definition of conformal dimen-
sion as the infimal Hausdorff dimension of (not necessarily Ahlfors regular)
quasisymmetrically equivalent metrics; let us denote this by ConfdimH . First,
if G admits such a hierarchy and is not virtually free, 1 ≤ ConfdimH ∂∞G ≤
Confdim ∂∞G = 1. Second, as the lower bound > 1 from [30] works for
ConfdimH also, if ConfdimH ∂∞G = 1 then all vertex groups in the hierar-
chical decomposition must be elementary or virtually Fuchsian as desired.
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Conformal dimension and splittings 799

Remark 1.6 The groups considered in Corollary 1.2, when torsion free, are
the groups Wise suggests might be the hyperbolic virtual limit groups [42,
Section 1.4].

1.2 Attainment of conformal dimension

It is natural to ask when the conformal dimension of a hyperbolic group is
attained, i.e. when ∂∞G is quasisymmetric to an Ahlfors Q-regular space with
Q = Confdim ∂∞G. When this is satisfied G often has rigidity properties, see
the results and discussion in [28].

Under the hypothesis of Corollary 1.2, Bonk and Kleiner have shown that if
a hyperbolic group G has Confdim ∂∞G = 1 and this is attained, i.e. if ∂∞G
is quasisymmetric to an Ahlfors 1-regular space, then ∂∞G is a circle and G
is virtually Fuchsian [2, Theorem 1.1].

When we have a graph of groups as in Theorem 1.1, we can show the
following.

Theorem 1.7 Suppose G is a hyperbolic group, and we are given a graph
of groups decomposition of G with vertex groups {Gi } and all edge groups
elementary. Then the conformal dimension of ∂∞G is attained if and only if
either:

• Confdim ∂∞G = 0 and G is 2-ended, or
• Confdim ∂∞G = 1 and G is virtually cocompact Fuchsian, or
• G = Gi for some vertex group with ∂∞Gi attaining its conformal dimen-
sion Confdim ∂∞Gi > 1.

The main idea here is that if the conformal dimension Confdim ∂∞G is
attained, then any “porous” subset has strictly smaller conformal dimension.
Since, by Theorem 1.1, Confdim ∂∞G = Confdim ∂∞Gi for some vertex
group Gi , and Gi is a quasiconvex subgroup of G, the limit set �Gi cannot
be porous in ∂∞G and one can conclude that Gi must equal G.

1.3 Idea of proof and toy example

Bywork of Keith–Kleiner, Bourdon–Kleiner and the first author [5,12,25], the
(Ahlfors regular) conformal dimension of the boundary of a hyperbolic group
X = ∂∞G is equal to the critical exponent of the combinatorial modulus of
the family of all curves in X of diameter at least δ, for some fixed small δ. Prior
to the works just cited, other authors who have used combinatorial modulus
to study conformal dimension include Pansu [35] and Keith–Laakso [26]; see
[12] for further discussion.

These notions are formally defined in Sect. 3, but we can illustrate the idea
here with a toy example. Consider the doubleG = π1(S)∗Zπ1(S)where S is a
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800 M. Carrasco, J. M. Mackay

Fig. 1 Some lifts in the
hyperbolic plane of the
filling curve abcd of the
surface group
〈a, b, c, d | [a, b][c, d] = 1〉

closed surface of genus 2, andZ corresponds to a closed geodesic curve γ in S.
The boundary ∂∞G is (speaking informally) the limit of a countable collection
of circles, corresponding to ∂∞π1(S), glued at pairs of points, corresponding
to ∂∞Z, in a tree-like fashion given by the Bass–Serre tree of the splitting.

The topological properties of the boundary depend on the type of
curve γ chosen. If γ is a simple closed curve, then Pansu observed that
Confdim ∂∞G = 1 by varying the hyperbolic structure on S to find CAT(−1)
model spaces for G with volume entropy arbitrarily close to that of the hyper-
bolic plane; see discussion in [3, Section 6] and [10, Theorem 1.1].

If γ is not simple, but not filling, one cannot use this argument. Recall
that a curve γ is filling if all connected components in S\γ are topological
discs, see Fig. 1 for an example of a filling curve. However, the second author
observed that such boundaries still satisfy the WS property, with cut points
arising from limit points corresponding to an essential curve in S\γ , and so
Confdim ∂∞G = 1 here also. For a complete characterisation of when ∂∞G
hasWS, including this case, see the work of the first author [13, Theorem 1.3].

The case when γ is filling remained unresolved, but now we can apply
Theorem 1.1 to find that Confdim ∂∞G = 1.

To show how to prove this, we sketch the idea for a toy example which
models ∂∞G. We build the space in stages, beginning by letting X0 be a circle
with lengthmetric and of diameter 1, and fix two antipodal points x−, x+ ∈ X0.
Define X1 by taking X0 and gluing on at pairs of points on say 12 copies of
X0 scaled down by 1/3 spaced around X0 in an overlapping fashion. For each
n = 2, 3, . . ., define Xn in the following way: take a copy of S1, and for
each j = 1, . . . , n glue on at pairs of points between 3 j−1 and 12 · 3 j−1

copies of Xn− j scaled down by 1/3 j , spaced around S1. We assume that these
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Conformal dimension and splittings 801

x− x+

Fig. 2 A toy model for the boundary of a surface group doubled along a filling curve

gluings are done in a self-similar way, so there is a natural limit space X of
this construction; see Fig. 2 for a partial illustration of how X3 is constructed.
In the figure, circles are coloured black, blue, red, green. While the circles
appear to overlap, a circle coloured blue, red or green meets no other circle of
the same colour, and exactly one circle of some preceding colour at exactly
one pair of points.

To show that Confdim X = 1, since Confdim X ≥ dimtop X = 1 is trivial,
it suffices to show that Confdim X ≤ p for an arbitrary p > 1. Using the
machinery of Keith–Kleiner and Carrasco mentioned above, such a bound
follows from a combinatorial modulus estimate on X . Rather than considering
all curves in X of diameter≥ δ, we simplify the argument here by considering
the family of all paths in X joining x− to x+, which we call �.

For each n ∈ N, let Sn be the cover of X by sets of size 3−n corresponding
to the copies of X0 of size 3−n in Xn . A weight function ρn : Sn → (0,∞) is
admissible for � if for any γ ∈ �, the ρn-length �ρn (γ ) satisfies

�ρn (γ ) :=
∑

A∈Sn :γ∩A �=∅
ρn(A) ≥ 1.

Roughly speaking, a weight function describes a hoped for conformal defor-
mation where the desired diameters of the images of A ∈ Sn are the values of
ρn(A), and admissibility ensures that the image doesn’t collapse down in size.
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802 M. Carrasco, J. M. Mackay

Fig. 3 A cartoon of the weight function ρ3

The p-volume Volp(ρn) of ρn is defined as

an := Volp(ρn) :=
∑
A∈Sn

ρn(A)p.

To achieve the bound Confdim X ≤ p, we require a sequence (ρn) of �-
admissible weight functions so that an = Volp(ρn) → 0 as n → ∞.

We now define ρn : Sn → (0,∞) and estimate an by induction. The first
step is easy: S0 = {A0} is a cover of X0 by a single open set, and we let
ρ0 : S0 → (0,∞), ρ0(A0) = 1, which is admissible and has a0 := 1.

Now for the inductive step: assume that suitable ρi have been defined for
all i = 0, . . . , n−1. The idea at step n is that we send the geometric sequence
of annuli A−

i := B(x−, 3−i/2)\B(x−, 3−(i+1)/2), for i = 0, . . . , n− 1, to an
arithmetic sequence of annuli each of size 1/2n, and likewise for the annuli
A+
i centred at x+. This will define an admissible weight function; see Fig. 3

for an illustration.
Now, we describe ρn in more detail (though not with an explicit formula),

and we estimate its p-volume an . For each i = 0, . . . , n − 1, and each j =
i+1, . . . , n, the annuli A−

i , A+
i contain in total≤ C3−i/3− j = C3 j−i copies

of Xn− j , which we endow with weights using ρn− j ; here C > 1 is a constant.
As we want these to have diameters totalling ≥ 1/n in the image, we apply a
scaling factor of 1/(3 j−i n) to these copies, which scales an− j by 1/(3 j−i n)p.
Thus, summing these up and using geometric series bounds, we have

an ≤ C
n−1∑
i=0

n∑
j=i+1

3 j−i · an− j

(3 j−i n)p

= C

np

n∑
j=1

j−1∑
i=0

3−( j−i)(p−1)an− j

≤ C ′

n p

n∑
j=1

an− j ≤ C ′

n p−1 max{a0, . . . , an−1},

for some constantC ′ > 1. This inequality implies that for n large, the sequence
(an) is nonincreasing, hence (an) is bounded, hence the inequality again
implies that an → 0 as n → ∞. The proof is complete.
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Conformal dimension and splittings 803

The general argument in the paper is more involved in several ways, but
has the same key idea of deforming geometric sequences of annuli into arith-
metic sequences at its foundation. Many additional complications are laid on
by incorporating deformations of ∂∞Gi which nearly achieve the conformal
dimension of the boundaries of each space ∂∞Gi , carefully checking admissi-
bility (for all curves of given diameter, not just those joining two points), and
setting up a suitable induction for the volume bounds.

1.4 Outline of paper

In Sect. 2 we describe the metric properties of limit sets in hyperbolic groups
with quasiconvex splittings. In Sects. 3–7 we prove Theorem 1.4: Sect. 3
reduces the theorem to a statement about combinatorialmodulus, and in Sect. 4
a sequence of weight functions is defined. The weight functions are shown to
have maximum values going to zero, to be admissible, and to have bounded
volume in Sects. 5, 6, and 7 respectively. Finally, in Sect. 8 we consider attain-
ment of conformal dimension and prove Theorem 1.7.

1.5 Notation

We write A � B if A ≤ CB for some constant C > 0, and A � B if A � B
and B � A. We may write A �C B or A �C B to indicate which C . We also
write A ≈ B if |A− B| ≤ C for some constant C ≥ 0. Throughout the paper,
C,C ′,C ′′, . . . ,C1,C2, . . . refer to constants only depending on the relevant
data; sometimeswemake the dependence clear bywritingC = C(α, β, ...) and
so on. For A, B ∈ R, we write A∨B := max{A, B} and A∧B := min{A, B}.

2 Graph of groups decompositions and boundaries

In this section we present useful facts about boundaries and quasiconvex split-
tings of hyperbolic groups that will be used later. For references on graph
of groups and Bass–Serre theory, see Serre [36], Scott–Wall [39] and Druţu–
Kapovich [15].

2.1 Boundaries of quasiconvex splittings

An abstract (oriented) graph G consists of two sets, the vertices VG and the
edges EG, with an initial vertexmap (·)− : EG → VG, e �→ e− and a terminal
vertex map (·)+ : EG → VG, e �→ e+.

Suppose G acts on a tree T without inversions on edges, minimally (i.e.
there is no proper invariant sub-tree of T ), and with the quotient graph G\T
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804 M. Carrasco, J. M. Mackay

finite. Any such action corresponds to a graph of groups decomposition G
for G where the underlying graph is G\T , for each vertex i ∈ V (G\T ) the
vertex group is a copy of the stabilizer Gv for some v ∈ VT in the orbit
corresponding to i , for each edge k ∈ E(G\T ) the edge group is a copy of
the stabilizer Ge for some e ∈ ET in the orbit corresponding to k, and the
injective homomorphisms from edge groups into vertex groups are induced by
the inclusions of stabilizersGe → Ge−,Ge → Ge+ .We call T the Bass–Serre
tree for the graph of groups decomposition G.

As all the stabilizers in an orbit are conjugate, for v ∈ V T we can define
iv ∈ VG, gv ∈ G so that Gv = gvGivg

−1
v , and for e ∈ ET we can define

ke ∈ EG, ge ∈ G so that Ge = geGkeg
−1
e .

We now build a model space Z forG. For each i ∈ VG let Mi be a presenta-
tion complex forGi , soMi is a 2-dimensional cell complexwithπ1(Mi ) = Gi .
Likewise for each k ∈ EG letMk be a presentation complex forGk . The homo-
morphisms from edge groups to vertex groups are induced by continuousmaps
fk− : Mk → Mk−, fk+ : Mk → Mk+ for k ∈ EG. The graph of spaces M is
built from the collection {Mi }i∈VG ∪{Mk ×[−1, 1]}k∈EG where we glue each
Mk × {±1} to Mk± by the map (z,±1) �→ fk±(z). By Bass–Serre theory, the
fundamental group π1(M) equals G.

Define a length metric on M which induces a geodesic metric on the uni-
versal cover Z := M̃ . This space Z is a tree of spaces with a copy Zv of M̃iv

for each v ∈ VT and a copy Ze × [−1, 1] of M̃ke × [−1, 1] for each e ∈ ET ,

where the subset M̃ke × {±1} is glued into the corresponding vertex spaces.
The action G � Z = M̃ preserves this tree-of-spaces structure, and so if we
collapse each vertex space Zv to a point and each edge space Ze × [−1, 1] to
an edge we recover our original tree T and action G � T .

Fix a base vertex v0 ∈ T and a basepoint o ∈ Z so that Z → T maps
o to v0. As G acts geometrically on Z the orbit map G → G · o induces a
quasi-isometry G → Z . This quasi-isometry coarsely maps each left coset
gvGiv , v ∈ VT to Zv , and likewise coarsely maps each geGke , e ∈ ET , to
Ze × [−1, 1].
In our case G is a hyperbolic group, and so Z is hyperbolic also. We fix

a visual metric d on X := ∂∞Z with visual parameter ε > 0, i.e. d(·, ·) �
e−ε(·|·)o , where (·|·)o denotes the Gromov product with basepoint o. We may
rescale to assume diam X = 1.

For a subgroup H of G, let �(H) ⊂ X be the limit set of H , i.e. the
accumulation points of H · o in X = ∂∞Z . For v ∈ VT we denote the limit
set of the stabilizer Gv by �v = �(Gv), and likewise for e ∈ ET we let
�e = �(Ge).

In each case considered here, the edge groups are uniformly quasicon-
vex as they are either finite or two-ended. Therefore the vertex groups are
uniformly quasiconvex also (see e.g. [9, Proposition 1.2]), and so hyper-
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Conformal dimension and splittings 805

bolic, and consequently for each v ∈ VT the quasi-isometric embedding
gvGiv → Z found by restricting the orbit map induces a quasisymmetry
∂∞gvGiv = gv∂∞Giv → �v ⊂ ∂∞Z .

Lemma 2.1 (cf. [9, Proposition 1.3], [24, Lemma 10]) If G is a hyperbolic
group with a graph of groups decomposition G over quasiconvex edge groups
with Bass–Serre tree T , with G acting geometrically on the model space Z,
and X = ∂∞Z with a visual metric, then every x ∈ X corresponds to exactly
one of the following:

• a point of ∂∞T , with a unique x for each t ∈ ∂∞T , or
• a point of �e for some e ∈ ET , or
• a point of �v for some unique v ∈ VT (but not in any �e).

Proof Consider a geodesic ray γ from o in Z representing x ∈ X .
For an edge e ∈ ET let Ze→ be the component of Z\(Ze × {0}) not

containing o. Let us say that γ essentially crosses the edge space corresponding
to e ∈ ET , or just γ essentially crosses e, if for everyC > 0, γ has unbounded
intersection with Ze→\NC(Ze × {0}).

If γ essentially crosses e ∈ ET , then it essentially crosses every edge
between v0 and e in T . Moreover if a simple path from v0 to some vertex v in
T can be extended by either e′ or e′′ in ET , then by quasiconvexity γ cannot
essentially cross both e′ and e′′. Therefore the collection of edges in T which
γ essentially crosses gives a simple path from v0, either (i) infinite or (ii) finite.
Let us call this path γ̂ : by definition it depends only on the point x ∈ X and
not the choice of γ .

In case (i), the path γ̂ determines a unique point in ∂∞T . We claim that there
is a bijection between the set of x ∈ X represented by γ with γ̂ unbounded,
and points in ∂∞T . First, given any point t ∈ ∂∞T , by an Arzelà–Ascoli
argument one can choose a geodesic ray γ in Z so that γ̂ limits to t .

Second, if γ, α are geodesic rays and γ̂ = α̂ is unbounded, then γ and α

must represent the same point in X : suppose not, then (γ |α)o < ∞. Choose
a large constant R and an edge e ∈ ET which γ and α essentially cross so
that the edge space Ze ×{0} is outside B(o, (γ |α)o+ R). Let p, q ∈ Ze ×{0}
be points where γ and α respectively meet the edge space. By hyperbolicity,
the geodesic from p to q must go within distance (γ |α)o + C of o, but by
quasiconvexity it must remain within a distance C of Ze×{0}, a contradiction
for R > 2C . So case (i) is understood.

Now suppose we are in case (ii), where γ̂ is a finite path with final vertex v,
and final edge e. If γ leaves Zv through some Ze′ × {0} and does not return,
as it does not essentially cross e′ it must limit to a point of �e′ . So if γ does
not limit to a point of any edge space, by quasiconvexity its tail must live in
NC (Zv) for some constantC , and so x ∈ �v . If x ∈ �v′ also for some v′ �= v,
then the tail of γ must live in NC(Zv′) also, hence in NC(Ze′) for any edge e′
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806 M. Carrasco, J. M. Mackay

between v and v′; as this contradicts our assumption on γ we have that v is
unique as required. ��

In the rest of this section we will use the approximate self-similarity of the
boundary of a hyperbolic group: there exists L0 ≥ 1 so that for all x ∈ X =
∂∞Z , and all 0 < r ≤ diam X , there exists g ∈ G so that the action of g on
X induces an L0-bi-Lipschitz map from the rescaled ball (B(x, r), 1

r d) to an
open set U ⊂ X with B(gx, 1

L0
) ⊂ U .

Lemma 2.2 (cf. [7, Proposition 6.2], [5, Proposition 3.3], [33, Corollary 4.9])
Suppose Z is a hyperbolic, proper, geodesic metric space with a geometric
group action G � Z, base point o, and a visual metric d on X = ∂∞Z
with visual parameter ε. Then there exists L0 ≥ 1 so that X is approximately
self-similar.

Proof By the cocompactness of G � Z there exists D > 0 so that G ·
BZ (o, D) = Z . Let L0 be given by [33, Corollary 4.9] applied to D, the
hyperbolicity constant δZ for Z , and parameters C0, ε for the visual metric d.

Supposewe are given x ∈ X and r ∈ (0, diam X ]. If−ε−1 log(2rC0)−δZ−
1 ≥ 0 then [33, Corollary 4.9(1)] with “y”=“x”, “r ′”= r , and an appropriate
g ∈ G gives an L ′

0-bi-Lipschitz map from (B(x, r), 1
r ) to an open set U ⊂ X

with B( f (x), 1
L ′
0
) ⊂ U . Otherwise, −ε−1 log(2rC0) − δZ − 1 < 0 and [33,

Corollary 4.9(2)] shows that 1 ∈ G gives approximate self-similarity. ��

2.2 Connected components in boundaries

Maximal splittings over finite edge groups enable us to control the geometry
of connected components in any space arising as the boundary of any space
admitting a geometric action by a hyperbolic group.

Recall that a metric space X is C-linearly connected for some C ≥ 1
if for any two points x, y ∈ X there is a compact connected set I ⊂ X
with diam I ≤ Cd(x, y). The following definition is used in the proof of
Theorem 3.2.

Definition 2.3 ( see [12, Theorem 3.11]) The components of a metric space
are uniformly linearly connected if they are each K�-linearly connected for
some fixed K� ≥ 1.

The components are uniformly separated if for some fixed Ks ≥ 1, for all
0 < r ≤ diam X, there exists a covering Wr of X, by open and closed sets,
such that for all W ∈ Wr , we have d(W, X\W ) ≥ r/Ks and there exists
a connected component Y of X with Y ⊂ W and W is contained in the r-
neighbourhood of Y .
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Recall that byStallings–Dunwoody [18,37], there is amaximal graphof groups
decomposition of G where all edge groups are finite, and the vertex groups
{Gi } are all finite or one-ended.
Lemma 2.4 Suppose G is a hyperbolic group acting geometrically on a
geodesic space Z ′, and let X ′ = ∂∞Z ′ with a fixed visual metric d ′. Let T be
a Bass-Serre tree corresponding to a Stallings–Dunwoody decomposition for
G with vertex stabilizers denoted {Gv}. Then
(1) the connected components of X ′ correspond to�v for Gv one-ended, and

to points in ∂∞T ;
(2) X ′ has uniform linear connectivity of components;
(3) X ′ has uniform separation of components.

The uniform separation of components condition is tricky to work if we let
X ′ be arbitrarily quasisymmetrically equivalent to X , but we only need the
case of visual metrics d ′ as in the lemma.

Proof Consider a Stallings–Dunwoody graph of groups decomposition of G
with corresponding tree T . Let Z be the model space for this graph of groups
decomposition for G constructed as in the previous section with base point o,
let X = ∂∞Z be its boundary with a visual metric d as before.

Since G acts geometrically on Z ′, there is a quasi-isometry φ : Z → Z ′
which sends the orbit G · o to the orbit G · φ(o) equivariantly; let o′ := φ(o).
Letψ : Z ′ → Z be a quasi-inverse ofφ, sendingG ·o′ toG ·o equivariantly. As
before, write �v = �(Gv), �e = �(Ge) for the given limit sets in X , and let
�′

v, �
′
e be the corresponding limit sets in X ′. By equivariance, ∂∞φ(�v) = �′

v

and ∂∞φ(�e) = �′
e.

We now begin the proof of (1). Since the edge groups are finite, in Z the
edge spaces Ze × {0}, e ∈ ET , have uniformly bounded diameter.

Consider a geodesic ray γ ′ from o′ in Z ′. Let γ be a geodesic ray from o in Z
at boundedHausdorff distance from the quasi-geodesicψ(γ ′). By Lemma 2.1,
and since �e = ∅ for any e ∈ ET , every x ∈ X either corresponds to a point
of ∂∞T , or to a point in �v for a unique v ∈ VT .

We define the simple path γ̂ in T as in the proof of Lemma 2.1; by con-
struction it is independent of the choice of γ , so we write γ̂ ′ := γ̂ . Suppose
we have two geodesic rays γ ′, α′ in Z ′ with corresponding geodesic rays γ, α

in Z as above. If γ essentially crosses some edge e ∈ ET and α does not, then
the Gromov product (γ |α)o is ≤ dZ (o, Ze × {0}) + C , and so the condition
“essentially crossing e” splits X into two sets at positive distance, thus the limit
points of γ and α are in different connected components of X . As ∂∞φ is a
homeomorphism, the limit points of γ ′ and α′ are in different connected com-
ponents of X ′. Thus if the limit points of γ ′ and α′ are in the same connected
component of X ′, then γ̂ ′ = α̂′.
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If γ̂ ′ is unbounded, and α′ is a geodesic ray in Z ′, either α̂′ �= γ̂ ′ and so α′
limits to a different connected component of X ′, or α̂′ = γ̂ ′, so by Lemma 2.1
α and γ represent the same point in X = ∂∞Z , and so α′ and γ ′ represent
the same point in X ′ = ∂∞φ(X). This point corresponds to the point in ∂∞T
represented by γ̂ ′.

On the other hand, if γ̂ ′ is a finite path, let v be the final vertex of the path.
Therefore γ must meet Zv in an unbounded set, and limits to a point of �v ,
and so γ ′ limits to a point of �′

v , which is the image of ∂∞gvGiv under the
boundary of the orbit map G → Z ′. As Giv is infinite it is one-ended, so
∂∞Giv is connected and thus so is �′

v , and every geodesic ray α′ with α̂′ = γ̂ ′
is in the same connected set �′

v . So (1) is proved.
We now prove (2). ByBonk–Kleiner [4] the boundary of a one-ended hyper-

bolic group is linearly connected. If v ∈ VT corresponds to a one-ended vertex
group, then as gvGiv → Zv → φ(Zv) is a quasi-isometry embedding into Z ′,
the boundary map gv∂∞Giv = ∂∞gvGiv → �v → �′

v is a quasisymmetric
embedding, so�′

v is also linearly connected, though not a priori with constants
independent of v.

However, we can use the approximate self-similarity of X ′ = ∂∞Z ′.
Let ε′ denote the visual parameter of the metric d ′. For v ∈ VT we have
diam�′

v � e−ε′dZ ′ (o′,φZv) because all geodesic rays from o′ to points in �′
v

must passwithin bounded distance of the same edge space adjacent toφZv, and
in particular their Gromov products with each other are all≥ dZ ′(o′, φZv)−C .
By Lemma 2.2, for all v we can find a g ∈ G so that, up to scaling, �′

v is
uniformly bi-Lipschitz to g ·�′

v = �′
gv , where diam�′

gv ≥ 1/C > 0. That is,
�′

gv is one of finitely many possible candidates. Thus the linear connectivity
constant of �′

v may be taken independent of v. We have proven (2).
It remains to show (3).
Given R > 0, let ER be the set of edges of T so that the corresponding edge

spaces φ(Ze) are within distance R of the base point o′ ∈ Z ′. Partition the
boundary X ′ according to the last edge in ER which the corresponding geodesic
rays γ ′ essentially cross, i.e., a geodesic representative γ of the quasi-geodesic
ray ψ(γ ′) essentially crosses the edge. Denote the partition by WR .

Notice that there is a set in this partition that corresponds to the rays whose
class does not essentially cross any edge in ER . This set is a neighbourhood
of �′

v0
. The sets in this partition are closed since a limit of rays in the same set

is also in the same set. Since the partition is finite the sets are open as well.
For W ∈ WR if x ∈ X ′\W and w ∈ W then by the definition of WR we

must have (x |w)o′ ≤ R + C and so d ′(x, w) ≥ e−ε′R/C ′ for some constant
C ′.

Consider W ∈ WR corresponding to geodesic rays which essentially cross
an edge e ∈ ER last, and let v be the vertex of e furthest from v0. If W
corresponds to rays not essentially crossing any edge of ER , let v = v0.
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If Gv is finite, then the (bounded) edge space for e is at distance ≥ R − C
from o′, else we would have to essentially cross another edge of ER . So we can
take as Y ⊂ X ′ the connected component of some such geodesic ray γ ′ in W .
Indeed, by the proof of (1) above, every geodesic ray corresponding to a point
of Y essentially crosses the same edge e as γ ′, so Y ⊂ W . Also, if w ∈ W
then for any y ∈ Y we have (y|w)o′ ≥ R − C and so d ′(y, w) ≤ e−ε′RC ′.

On the other hand, if Gv is infinite, let Y = �′
v ⊂ W . If w ∈ W then the

last point z of a geodesic ray to w in B(o′, R) is (within bounded distance
of) some point in φZv, as the ray essentially crosses the same edges of ER
as any geodesic from o′ to φZv . Since Gv is infinite there is a geodesic line
close to φZv passing within bounded distance of z; let y, y′ ∈ Y = �′

v

be the limit points of the line. By hyperbolicity, one of the geodesic rays
from o′ to y or to y′ passes within a uniformly bounded distance of z, so
max{(w|y)o′, (w|y′)o′ } ≥ R − C , thus d ′(Y, w) ≤ e−ε′RC ′.

In conclusion the uniform separation of components, statement (3) of the
lemma, is satisfied for Ks := (C ′)2 and by taking Wr := WR for R =
−1
ε′ log(r/C

′). ��

2.3 Two-ended edge groups

We now consider in more detail the case when all edge groups are two-ended
(and hence all vertex groups are infinite). In general, stabilizers of different
edge groups can have the same limit sets, so to get stronger results about the
geometry of such groups we switch from the given graph of groups to a new,
bipartite, graph of groups. We follow Guirardel–Levitt [19].

Proposition 2.5 Given a hyperbolic groupG with a graph of groups decompo-
sition over 2-ended edge groups, we can find a graph of groups corresponding
to an action G � T where the tree is bipartite with V T = V0T � V1T , and

(1) all V0T vertex groups are non-elementary and are conjugate to some
original vertex group;

(2) all V1T groups and all edge groups are 2-ended;
(3) different V1T vertex groups are not commensurable, and hence have dis-

joint limit sets in G;
(4) every original vertex group that was non-elementary is also a new V0T

vertex group.

Proof LetG � S be the original tree action. The new tree T is what Guirardel
and Levitt call the tree of cylinders of S. Their construction is as follows (for
details see [19, Section 4], for an example see Fig. 4).

Define an equivalence relation ∼S on the set of non-oriented edges of S by
e ∼S e′ if Ge and Ge′ are commensurable (i.e. if Ge ∩ Ge′ has finite index in
both Ge and Ge′). A cylinder of S is an equivalence class [e]S .
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CA B

a �→c �→ b2

C1 C2A B〈b〉
a �→c1 �→ b2 b �→c2 �→ b

〈b2〉
〈b2〉A B

bAb−1

〈b2〉 〈b〉
〈b2〉

A

bAb−1

〈b〉 BBB

Fig. 4 Let A = 〈a1, a2〉, B = 〈b1, b2〉 be two copies of the free group and C = 〈c〉 � Z. Let
a = [a1, a2] and b = [b1, b2], and consider the amalgamated product G = A ∗C B where the
injection maps are given by c �→ a and c �→ b2. The group G is isomorphic to the fundamental
group of the complex obtained by gluing two punctured tori to aMobius band, one of them glued
along its boundary to the boundary of the band, and the other one glued along its boundary to the
mid-circle of the band. The splitting A ∗C B corresponds to the graph of groups decomposition
shown on the left. Notice that the edges of S issuing from a B-vertex are naturally paired: in
this case the cylinders are the pairs of edges having the same stabilizer. The tree of cylinders
T corresponds to replacing these pairs by a tripod. The associated graph of groups is shown on
the right

Notice that since G is hyperbolic, given two edges e and e′ of S either
�e ∩ �e′ = ∅ or �e = �e′ . Moreover, e ∼S e′ if and only if �e = �e′ .

By [19, Lemma 4.2] every cylinder of S is connected, and hence a subtree.
Since there are only finitely many conjugacy classes of edge groups, and
there are only finitely many conjugate edge groups that can contain a given
loxodromic, every cylinder is finite.

The tree of cylinders T is the bipartite tree with vertex set VT = V0T �V1T
defined as follows:

(1) V0T is the set of vertices v of S belonging to at least two distinct cylinders;
(2) V1T is the set of cylinders [e]S of S;
(3) and there is an edge between v and [e]S if v as a vertex of S belongs to the

union of edges of [e]S .
That is, the tree T is obtained from S by replacing each cylinder by the cone
on its boundary. See [20, Definition 4.8] for the proof that T is indeed a tree.
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Moreover, the group G acts on T and the action G � T is also minimal, [20,
Lemma 4.9].

Notice that a non-elementary stabilizer Gv of a vertex v of S has infinite
degree in S. Therefore, if a vertex of S belongs to only one cylinder, it has finite
degree and its stabilizer must be two-ended. That is, vertices of S with non-
elementary stabilizers are also vertices in V0T . This shows (4). Moreover, the
stabilizer of a vertex in V0T is the same as the stabilizer of the corresponding
vertex in S, so no new non-elementary vertices are created by this construction,
and this gives (1).

The stabilizer of a vertex in V1T is the global stabilizer of a cylinder [e]S in
S, which coincides with the maximal two-ended subgroup containing Ge′ for
any edge e′ ∈ [e]S . This proves the first claim of (2), and shows that an edge
stabilizer of T is elementary. But if (v, [e]S) is an edge of T , then its stabilizer
contains the stabilizer of the edge of [e]S incident to v, which is two-ended.
Therefore edge stabilizers of S are two-ended (see also [19, Proposition 6.1]).
This completes the proof of (2). Property (3) follows directly by the definition
of cylinders. ��

2.4 Metric estimates for the limit sets of the bipartite tree action

To compute conformal dimension we need metric estimates on boundaries. In
this section we estimate the distances and diameters of the limit sets of the
vertex groups appearing in the bipartite tree action of Proposition 2.5. We use
K1, K2, . . . for the constants found in these estimates so that their use is clear
later in the paper.

We thinkof theV1T vertex spaces/groups as generalised edge spaces/groups,
and indeed we do not need to consider edges any more, since every edge space
is at finite Hausdorff distance from the adjacent V1T vertex space. Neverthe-
less we keep the notation so that v stands for a vertex in V0T and e stands for
a vertex in V1T . So Lemma 2.1 becomes:

Lemma 2.6 If G is a hyperbolic group with G � T as in Proposition 2.5,
with G acting geometrically on the model space Z, and X = ∂∞Z with a
visual metric, then every x ∈ X corresponds to exactly one of the following:

• a point of ∂∞T , with a unique x for each t ∈ ∂∞T , or
• a point of �e for some unique e ∈ V1T , or
• a point of �v for some unique v ∈ V0T (but not in any �e).

As before, by quasiconvexity �v is a quasisymmetric image of gv∂∞Giv
for each v ∈ V0T . Likewise, for each e ∈ V1T , �e is a quasisymmetric image
of ge∂∞Gke , that is, it is a pair of points in X .

Fix corresponding basepoints v0 ∈ V0T , o ∈ Z . For each v ∈ V0T \{v0},
let ev ∈ V1T be the last V1T vertex on the geodesic from v0 to v. We have
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that �ev cuts X into at least two components [9, Sec 1], while the interior of
the open edge (ev, v) cuts T into exactly two components, one containing v0
and the other not. Let Z←ev be the component of Z\Z(ev,v) × {0} containing
o, and let Zev→ be the other component. We define U←v := ∂∞Z←ev and
Uv→ := ∂∞Zev→. Since Z←ev and Zev→ are quasiconvex, these correspond
to the closure of the limit sets of the corresponding components of T \(ev, v).
Note that U←v ∩Uv→ = �ev .

We let Uv0→ := X and leave U←v0 and �ev0
undefined.

We say that w ∈ V0T is a descendant of v ∈ V0T \{v0} if v separates w

from v0 in T . We also say that all vertices of T are descendants of v0. For
v ∈ T , we denote by T0(v) the collection of v and all its descendants in V0T .

In all the following lemmas we assume as above that Z is a tree of spaces
for a graph of groups decomposition of the group G like in Proposition 2.5.

The following lemma implies that for any e �= e′ ∈ V1T , we have
�(�e, �e′) ≥ 1/K1, where

�(U, V ) := d(U, V )

diamU ∧ diam V

is the relative distance of U, V ⊂ X .

Lemma 2.7 There exists a constant K1 so that for e �= e′ ∈ V1T we have

d(�e, �e′) �K1 diam�e ∧ diam�e′ .

Proof Pick loxodromic elements g, g′ so that g±∞ = �e and (g′)±∞ = �e′ ,
and let �, �′ be their translation lengths; as there are finitely many conjugation
classes of edge stabilizers, we may assume that �, �′ are uniformly bounded
away from 0 and∞, and that there are uniform bounds on the quasi-geodesic
constants for n �→ gn and n �→ (g′)n .

Consider the tree approximation to geodesic axes for �e and �e′ as in
Fig. 5. Suppose, as in the left of the figure, the axes remain 2δZ -close for a
large distance L , where δZ is the hyperbolicity constant for Z . Up to swapping
g, g−1 this means that there is a point p so that for any i ≤ L/�′, the point
g−�i�′/��(g′)i p is uniformly close to p. Thus, by the uniform properness of
G � Z , there exists L ′ independent of e, e′ so that if L > L ′ then there
exist i1 �= i2 so that g−�i1�′/��(g′)i1 = g−�i2�′/��(g′)i2 , hence 〈g〉 and 〈g′〉 are
commensurable, a contradiction to the disjointness of �e, �e′ .

Thus, up to a uniformly bounded error, the tree approximation of �e, �e′
must look like the right of Fig. 5, for some c ≥ 0. Up to swapping e, e′, the
position of o in the tree approximation must look like that of o or o′ in the
figure; suppose the former (the latter case is similar and easier), and label
the other relevant distances a, b, up to bounded error. One can compute that
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o

Ze Ze′

a b

c

o′

Ze Ze′

p

L

Fig. 5 Tree approximation for Lemma 2.7

d(�e, �e′) � e−ε(a+b), diam�e � e−εa , and diam�e′ � e−ε(a+b+c), so as
a + b + c ≥ a + b we are done. ��

The tree-of-spaces structure of Z implies the following bounds when we
consider how edge limit sets cut X .

Lemma 2.8 There exists a constant K2 so that for v, w ∈ V0T \{v0} with
w ∈ T0(v) we have

d(U←v,Uw→) �K2 d(�ev , �ew).

Proof Since �ev ⊂ U←v and �ew ⊂ Uw→, we have d(U←v,Uw→) ≤
d(�ev , �ew). In particular, if �ev = �ew then d(U←v,Uw→) = 0 =
d(�ev , �ew), so we can assume that �ev and �ew are disjoint.

Suppose x ∈ U←v and y ∈ Uw→. By the quasiconvexity of Zev , a geodesic
from o to x must lie in the C-neighbourhood of Z←ev . By the quasiconvexity
of Zew , a geodesic from o to y must consist of an initial segment of length
dZ (o, Zew) from o to a point within distance C of Zew , then a tail which
remains within distance C of Zew→. If we let e = ev and e′ = ew as in the
proof of Lemma 2.7 and consider Fig. 5, this means that (x |y) ≤ a + b + C ,
and so d(x, y) � e−ε(a+b) � d(�ev , �ew) by the argument of Lemma 2.7.
Thus d(U←v,Uw→) � d(�ev , �ew) and we are done. ��
Lemma 2.9 There exists a constant K3 so that for any v ∈ V0T \{v0} and
p ∈ Uv→, we have d(p,U←v) �K3 d(p, �ev ).

Proof Take u ∈ V0T so that v ∈ T0(u), dT (u, v) = 2. Then since �ev ⊂
�u ⊂ U←v we have d(p,U←v) ≤ d(p, �ev ).

Now suppose p /∈ �ev . By the quasiconvexity of Zev a geodesic γ from
o to p travels from o to within C of a nearest point in Zev to o, then travels
within NC Zev to a point q, then stays in Zev→\NC Zev .Moreover, d(p, �ev ) �
e−εdZ (o,q).
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Suppose we have y ∈ U←v = ∂∞Z←ev . By the quasiconvexity of Zev , a
geodesic from o to y cannot stay close to γ past q, thus (y|p) ≤ dZ (o, q)+C ′.
So d(p, �ev ) � e−εdZ (o,q) � d(p, y). Taking the infimum over all y ∈ U←v ,
we conclude that d(p, �ev ) � d(p,U←v). ��

A vertex limit set �v , its parent edge limit set �ev and Uv→, the part of X
containing �v which �ev cuts out, all have comparable diameters.

Lemma 2.10 There exists a constant K4 so that for v ∈ V0T \{v0}, we have
diam�ev ≤ diam�v ≤ diamUv→ ≤ K4 diam�ev .

��
Proof As �ev ⊂ �v ⊂ Uv→, the first two inequalities are trivial. Now as
�ev is two-ended, diam�ev � e−εdZ (o,Zev ). By the quasiconvexity of Zev any
geodesic γ from o with a tail in Zev→ must satisfy dZ (γ (t), Zev→) ≤ C for
all t ≥ dZ (o, Zev ). So by the definition ofUv→, if x ∈ Uv→ then the geodesic
ray from o to x must have a tail in theC-neighbourhood of Zev→ also. Thus for
two points x, y ∈ Uv→, the quasiconvexity of Zev implies that the geodesic
line from x to y will live in a bounded neighbourhood of Zev→, and hence
(x |y) ≥ dZ (o, Zev ) − C thus

diamUv→ = sup
x,y∈Uv→

d(x, y) � e−εdZ (o,Ze) � diam�ev .

��
The (relative) diameter of limit sets reflect the configuration of the corre-

sponding vertex spaces.

Lemma 2.11 There exists a constant K5 so that for any v, w ∈ V0T with
w ∈ T0(v), we have

diam�v �K5 e
−εdZ (o,Zv) ≤ e−εdT (v0,v), and (2.12)

diam�w

diam�v

�K5 e
−εdZ (pv,Zw) ≤ e−εdT (v,w), (2.13)

where pv ∈ Zv is a closest point in Zv to o ∈ Z.

Proof The projection Z → T that collapses each vertex space to a point, and
each edge space to an edge is 1-Lipschitz, so the second inequalities are trivial.

For the first inequality in (2.12), as Zv is quasi-isometric to the coset gvGiv
and Giv is an infinite group, for any point p ∈ Zv there is a geodesic line γ so
that d(γ, p) ≤ C and γ is in the C-neighbourhood NC(Zv) of Zv . Suppose

123



Conformal dimension and splittings 815

pv ∈ Zv is a closest point to o. As there is a geodesic line almost through pv

which limits to points in �v , we have diam�v � e−εdZ (o,pv) � e−εdZ (o,Zv).
On the other hand, for any distinct x, y ∈ �v if α is a geodesic line from x to
y, by quasiconvexity α ⊂ NC (Zv), and so (x |y) � dZ (o, Zv) − C and thus,
taking the supremum over all x, y ∈ �v , diam�v � e−εdZ (o,Zv).

Let pv ∈ Zv and pw ∈ Zw be closest points to o in Zv and Zw, respectively.
By (2.12) we have diam�w/ diam�v � e−ε(dZ (o,pw)−dZ (o,pv)). By quasicon-
vexity and hyperbolicity, the geodesic from o to pw passes within distance C
of pv , and pw is within C of a closest point to pv in Zw, thus

|dZ (pv, Zw) − (dZ (o, pw) − dZ (o, pv))| ≤ C,

and the conclusion follows. ��
Points in two different limit sets cannot be much closer to each other than

they are to their first common ancestor.

Lemma 2.14 There exists a constant K6 so that if v ∈ V0T , w, w′ ∈ T0(v)

with dT (v, w) = dT (v, w′) = 2 and w �= w′, then for x ∈ Uw→, d(x, �v) ≤
K6d(x,Uw′→).

Proof Suppose x ∈ Uw→ and y ∈ Uw′→. By quasiconvexity of edge and
vertex spaces, there is a C so that a bi-infinite geodesic γ from x to y has an
initial tail in NC (Zew→), then a segment in NC (Zv), then a terminal tail in
NC (Zew′→) (these may overlap). Let p be a closest point in γ to o; necessarily
p ∈ NC (Zv). Note that e−εdZ (o,p) � d(x, y).
Take a bi-infinite geodesic β in NC (Zv) passing within distance C of p.

Since p is within C of a geodesic ray from o to x , either (x |β(−∞)) ≥
dZ (o, p) − C ′ or (x |β(+∞)) ≥ dZ (o, p) − C ′. Without loss of generality,
suppose the latter holds. Then

d(x, �v) ≤ d(x, β(+∞)) � e−εdZ (o,p) � d(x, y).

Taking the infimum of the right-hand side over all y ∈ Uw′→ we get
d(x, �v) � d(x,Uw′→). ��

Limit sets in the same orbit are, up to rescaling, uniformly bi-Lipschitz (as
we do not use the explicit constant later, we just call it C).

Lemma 2.15 There exists C so that for any v ∈ T , the metric spaces

{
1

diam�gv
�gv

}

g∈G

are all pairwise C-bi-Lipschitz.
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Proof As there are finitely many vertex orbits it suffices to show the theorem
for a fixed v ∈ T . We have that g�v = �gv for any g ∈ G by the equivariance
of the map Z → T .

By approximate self-similarity (Lemma 2.2) applied to a ball of radius
diam�gv around a point of �gv , there exists h ∈ G so that the map

(
�gv,

1

diam�gv
d

)
→ (h�gv, d)

is bi-Lipschitz with uniform constant. Since diam h�gv = diam�hgv is then
� 1, we have by Lemma 2.11 that dZ (o, Zhgv) ≤ C1 for some constant C1.

Recall that gvo ∈ Zv , so ggvo ∈ gZv = Zgv . Let g1, . . . , gk ∈ G be
chosen so that any Zg′v , g′ ∈ G, with dZ (o, Zg′v) ≤ C1 has g′v = giv for
some i ∈ {1, . . . , k}. Moreover, we can choose gi so that gi gvo ∈ Zgiv is a
closest point to o in the orbit Go ∩ Zgiv , and so dZ (o, gi gvo) ≤ C2. Thus for
any i, j ∈ {1, . . . , k},
dZ (o, g j g

−1
i o) ≤ dZ (o, g j gvo) + dZ (g j gvo, g j g

−1
i o) ≤ C2 + dZ (gi gvo, o)

≤ 2C2.

Suppose for any two i, j ∈ {1, . . . , k} we map �giv to �g jv by

h′ := g j g
−1
i . Then for any two points x, y ∈ �giv , we have d(x, y) �

e−ε(x |y)o = e−ε(h′x |h′y)h′o , and d(h′x, h′y) � e−ε(h′x |h′y)o . As |(h′x |h′y)o −
(h′x |h′y)h′o| ≤ dZ (o, h′o) ≤ 2C2, we then have that the map h′ acts to send
�giv to �g jv in a uniformly bi-Lipschitz way.

So in conclusion, by a uniformly bi-Lipschitz map one can send any of the

spaces
(
�gv,

1
diam�gv

d
)
to one of a finite set of spaces �g1v, . . . , �gkv where

each diam�giv � 1, and these spaces are each pairwise bi-Lipschitz with
uniform constants. ��

Ametric space X is C-uniformly perfect if for any x ∈ X, r ∈ (0, diam X),
we have B(x, r)\B(x, r/C) �= ∅. This property is preserved by quasisym-
metric maps, up to changing the constant C (see [22, Exercise 11.2]). For
completeness, we recall that a homeomorphism f : X → X ′ is qua-
sisymmetric if there exists a homeomorphism η : [0,∞) → [0,∞) so
that for all x, y, z ∈ X , d(x, y) ≤ td(x, z) implies that d( f (x), f (y)) ≤
η(t)d( f (x), f (z)) [40].

Lemma 2.16 There exists C so that for any v ∈ V0T , the metric space �v is
C-uniformly perfect.

Proof Suppose H is an infinite hyperbolic group, and ∂∞H is endowed with
a visual metric with visual parameter ε.
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If ∂∞H has at least 3 points there is an ideal hyperbolic triangle limiting to
distinct points y1, y2, y3 ∈ ∂∞H . For any x ∈ ∂∞H and r ∈ (0, diam ∂∞H ]
there exists h ∈ H so that the action of h moves the quasi-centre of the ideal
triangle to a point p on the geodesic from the basepoint o to x at distance
≈ −1

ε
log r from o. Inspecting the tree approximation to o, x, hy1, hy2, hy3,

we see that for at least one i ∈ {1, 2, 3}, (x |hyi )o is approximately dH (o, p),
and so d∂∞H (x, hyi ) � r . This suffices to show ∂∞H is uniformly perfect.

For any v ∈ V0T , since �v has more than two points then as the map
∂∞gvGiv → �v is a quasisymmetry, ∂∞Giv has more than two points and
so is uniformly perfect. The composition ∂∞Giv → gv∂∞Giv → �v is a
quasisymmetry, and so �v is uniformly perfect too. By Lemma 2.15, up to
rescaling the spaces {�gv} are uniformly bi-Lipschitz, so {�gv} are uniformly
uniformly perfect. As there are only finitely many vertex orbits in T we are
done. ��

3 Conformal dimension and Combinatorial modulus

In this section we describe how conformal dimension can be calculated using
combinatorial modulus by work of [5,12]. Using this we reduce Theorem 1.4
to a statement about such modulus, Theorem 3.4 below.

First, a complete metric space X is Ahlfors (Q-)regular if for some Q ≥ 0
there is a Borel measureμ on X so that for all x ∈ X, r ∈ (0, diam X ]we have
μ(B(x, r)) � r Q . In such a situation Q must equal the Hausdorff dimension
of X , and moreover μ must be comparable to the Hausdorff Q-measure on X .

If Z is a Gromov hyperbolic space admitting a geometric action (that is, a
proper and cocompact action by isometries) by a finitely generated group, then
the boundary ∂∞Z endowed with a visual metric is Ahlfors regular by work of
Coornaert [14]. We work with the following variation on Pansu’s conformal
dimension.

Definition 3.1 Let X be a metric space. Then the (Ahlfors regular) conformal
dimension of X is the infimum of all Q such that X is quasisymmetric to an
Ahlfors Q-regular space.

IfG is a Gromov hyperbolic group thenConfdim ∂∞G is a well-defined invari-
ant of G, and if a group H is quasi-isometric to G then Confdim ∂∞H =
Confdim ∂∞G.

The (Ahlfors regular) conformal dimension of a space which is approx-
imately self-similar can be calculated using estimates on ‘combinatorial
modulus’ [5,12], which we now go on to describe.

We fix a large constant a > 1 from now on (a ≥ 2 suffices). For each i ∈ N,
let Xi be a maximal a−i -separated set in X , and let Si = {B(x, a−i )}x∈Xi be
the corresponding cover of X .
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818 M. Carrasco, J. M. Mackay

For δ > 0 let �δ be the collection of all paths in X of diameter ≥ δ.
Let ρn : Sn → [0,∞) be a function (a “weight function”). We say that ρn

is �δ-admissible if for any γ ∈ �δ , we have

�ρn (γ ) :=
∑

A∈Sn,A∩γ �=∅
ρn(A) ≥ 1.

The Sn-combinatorial p-modulus of �δ is defined by

Modp(�δ,Sn) := inf
ρn

Volp(ρn), where Volp(ρn) :=
∑
A∈Sn

ρn(A)p

and where we infimise over all �δ-admissible ρn : Sn → [0,∞). The critical
exponent for the p-modulus is defined by

pc(δ) := inf
{
p > 0 : lim inf

n→∞ Modp(�δ,Sn) = 0
}

.

Theorem 3.2 (Keith–Kleiner, Carrasco [12, Corollary 3.13]) If G is a hyper-
bolic groupacting geometrically onanunboundedgeodesic (hyperbolic) space
Z, with boundary at infinity X = ∂∞Z endowed with a visual metric d and
pc(δ) defined as above, then there exists δ0 > 0 so that for all 0 < δ ≤ δ0,

Confdim ∂∞G = Confdim X = pc(δ).

Proof Such an X equipped with a visual metric satisfies the hypotheses of [12,
Corollary 3.13] by Lemmas 2.2 and 2.4. ��

In order to estimate pc(δ), it actually suffices to show that Modp(�δ,Sn) is
bounded independently of n, provided the maximum value of ρn goes to zero:

Lemma 3.3 (Bourdon–Kleiner [5, Corollary 3.7(3)]) For any p ≥ 1 and δ,
for some Sn, �δ as above, if there exists ρn : Sn → [0,∞) weights that are
�δ-admissible, and ‖ρn‖∞ → 0 as n → ∞, and supn Volp(ρn) < ∞, then
pc(δ) ≤ p.

Proof For any ε > 0,

Volp+ε(ρn) =
∑
A∈Sn

ρn(A)p+ε ≤ ‖ρn‖ε∞Volp(ρn) → 0 as n → ∞,

therefore pc(δ) ≤ p + ε; as ε was arbitrary we are done. ��
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So for each p bigger than our intended upper bound, it will suffice to find
δ ∈ (0, δ0) and such a sequence of weight functions.

Theorem 3.4 Suppose G is as in the statement of Theorem 1.4 and X a visual
metric on the boundary of the model space arising from the tree of cylinders
construction of Proposition 2.5, and δ > 0 is fixed.

Then for any p > 1∨max{Confdim ∂∞Gi }, there exists weight functions ρn
onSn so that each ρn is�δ-admissible, limn→∞ ‖ρn‖∞ = 0, and the sequence
Volp(ρn) is bounded.

This theorem will be proved in subsequent sections, as we now summarise.

Proof The weights are defined in Sect. 4, up to a choice of parameters δ′, E1,
E2 and E3. Theorem 5.1 shows that limn→∞ ‖ρn‖∞ = 0 and fixes the value
of E2. Admissibility is shown, for suitable (now fixed) parameters δ′, E1 and
E3, by Theorem 6.1. The uniform bounds on Volp(ρn) are then shown by
Theorem 7.4. ��

Proof of Theorem 1.4 The lower bound

Confdim ∂∞G ≥ 1 ∨max{Confdim ∂∞Gi }

follows from the fact that G is not virtually free and that each vertex group Gi
is quasiconvex in G.

For the upper bound, let δ0 be given by Theorem 3.2 for X = ∂∞G, and fix
δ ∈ (0, δ0]. By Theorem 3.2, Lemma 3.3 and Theorem 3.4 we then have

Confdim ∂∞G = pc(δ) ≤ 1 ∨max{Confdim ∂∞Gi }.

��

4 Candidate weight function

Our goal in this section is, given a choice of p > max{Confdim ∂∞Gi }, to
define suitable weight functions as in Theorem 3.4. The idea is similar to that
of the example in Sect. 1.3: to iteratively define weights that turn geometric
sequences of scales into arithmetic. There are additional complications which
we describe as they arise.

We continue with the notation of Sect. 2, and T is the tree of cylinders of
Proposition 2.5 with VT = V0T � V1T . Let v0 ∈ V0T be the fixed basepoint
in T .
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Projections to T

We project Sn onto T as follows: for A ∈ Sn , define the tree projection
π(A) ∈ V0T to be the closest vertex to v0 in the convex hull

Conv (v ∈ T0V : �v ∩ A �= ∅)

of all vertices whose limit set intersect A. The relationship between A and
�π(A) is indicated by the following:

Lemma 4.1 There exists K7 ≥ 1 so that for A ∈ Sn, diam�π(A) ≥ 1
K7

a−n,
and the distance from the centre of A to �π(a) is at most K7a−n.

Proof If π(A) = v0 the bounds are trivial, so assume otherwise. Since A is
centred on a point p ∈ Uπ(A)→ and does not meet �eπ(A)

, by Lemma 2.9
d(p,U←π(A)) � d(p, �eπ(A)

) � a−n , thus Uπ(A)→ = X\U←π(A) contains
a ball centred on p of radius � a−n . So by Lemma 2.10 and the uniform
perfectness of X , diam�π(A) � diamUπ(A)→ ≥ a−n .

If A∩�π(A) �= ∅, we are done for any K7 ≥ 1. Otherwise A∩�π(A) = ∅,
but by the definition of π(A), A must meet Uw→ and Uw′→ for two distinct
w, w′ ∈ T0(v) with dT (v, w) = dT (v, w′) = 2. Therefore by Lemma 2.14,
d(A, �π(A)) � a−n . ��

Given v, w ∈ V0T , let [v, w] ⊂ V0T be the unique simple path from v

to w. Suppose A ∈ Sn and [v0, π(A)] consists of v0, v1, . . . , vm = π(A). If
v = vi for some i ∈ {0, 1, . . . ,m− 1} then let v→A = vi+1; if v = π(A) then
let v→A = π(A); and if v /∈ [v0, π(A)] let v→A be undefined.

Let us also define for any δ > 0

Tδ := Conv ({v0} ∪ {v ∈ V0T : diam�v > δ}) , (4.2)

which is the convex hull of the finite set of vertices in T whose limit sets are
large (see the first equality in (2.12)); such sets will be used in the definition
below.

Model spaces

We are given a choice of p > max{Confdim ∂∞Gi }, and want to define
suitable weight functions as in Theorem 3.4. For v ∈ V0T , fix Qv ∈
[Confdim ∂∞Gv, p), with the choice uniform on each G-orbit.

For v ∈ V0T , let Dv = diam�v . For each G-orbit Gv ⊂ V0T , the collec-
tion of rescaled spaces { 1

Dgv
�gv} are all uniformly bi-Lipschitz to each other

(Lemma 2.15). For each v ∈ T , we fix a Qv-regular space Xv = (Xv, dv) of
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diameter 1 in the conformal gauge of ∂∞Gv , and an η-quasisymmetry map
hv : �v → Xv . Again by Lemma 2.15, Xv and hv may be chosen so that the
maps hgv : 1

Dgv
�gv → Xgv have Xgv independent of g and the different maps

hgv differing from each other only by a uniform bi-Lipschitz homeomorphism.
(This last condition means that there exists C so that for any g, g′ ∈ G, there
exists a C-bi-Lipschitz homeomorphism f : 1

Dgv
�gv → 1

Dg′v
�g′v so that

hgv = hg′v ◦ f .) Finally, the distortion function η may be chosen uniformly
for all v, as dilations do not affect distortion.

As η is fixed and the spaces �v are uniformly perfect with constant inde-
pendent of v (Lemma 2.16), we can find τ ∈ (0, 1] and λ ≥ 1 so that the maps
hv : 1

Dv
�v → Xv are uniform (τ, λ)-bi-Hölder maps by [40, Theorem 3.14],

i.e. for all v ∈ V0T and all x, y ∈ �v ,

1

λ

(
d(x, y)

Dv

)1/τ

≤ dv(hv(x), hv(y)) ≤ λ

(
d(x, y)

Dv

)τ

. (4.3)

When we push the cover Sn forward by hv to Xv , it is useful to know that
the images are contained in balls of radius smaller than a−mv/2 for a suitable
mv; by (4.3) we can take

mv := �τ(n + loga Dv) − loga(2λ)� ∨ 0. (4.4)

Definition of weight function

For each n ∈ N, and a constant E1 found later, we define the weight function
ρn : Sn → R+ by

ρn(A) := E1a
−n

∏
v∈V0T

ρn
v (A). (4.5)

For v ∈ V0T and A ∈ Sn , �v and A can interact in three ways according
to whether v /∈ [v0, π(A)], v ∈ [v0, π(A)) or v = π(A). In the first case, we
don’t want ρn

v to influence ρn(A) at all; in the latter two we need to define a
subset of �v corresponding to the location of A in or near �v:

Wv,A :=

⎧
⎪⎨
⎪⎩

∅ if v /∈ [v0, π(A)],
�ev→A

if v ∈ [v0, π(A)),

BA otherwise,

(4.6)

where BA is a ball in �v→A = �v of radius a−n centred on a point at most
K7a−n from the centre of A; such a ball exists by Lemma 4.1.
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How shall we define ρn
v (A)? The first ingredient is to distort according to hv:

we want the relative size ofWv,A in �v to match the relative size of hv(Wv,A)

in Xv , so we have a factor of
diam hv(Wv,A)/1
diamWv,A/Dv

.
The second ingredient is to transform geometric to arithmetic scales: for

i = 1, . . . ,mv the annulus of points at distance [a−(i+1), a−i ] from hv�ev
should be sent to an annulus of width 1

mv
, so sets at distance ∼ a−i from

hv�ev should be stretched by ∼ 1
mva−i . But we don’t want to do this to large

vertex limit sets, or if a set is too close to �ev , as either could interfere with
showing admissibility. So, for W ⊂ �v we let

fv(W ) :=
{
1 if dv(hvW, hv�ev ) ≤ a−mv or v ∈ Tδ′ , and

mvdv(hvW, hv�ev ) otherwise,
(4.7)

where Tδ′ is the finite subtree defined by (4.2) for a suitable parameter δ′ ∈
(0, diam�v0) determined later. Note that we only use ev in (4.7) when it is
defined since v /∈ Tδ′ implies v �= v0.

Combining the two deformations leads us to define, for each v ∈ V0T ,

ρn
v (A) :=

⎧
⎪⎪⎨
⎪⎪⎩

1
if d(A,U←v) ≤ E2a

−n or

mv ≤ 1 or Wv,A = ∅, and
diam hv(Wv,A)

diamWv,A

E3Dv

fv(Wv,A)
otherwise.

(4.8)

Here E2, E3, along with E1 from (4.5), are constants we choose later.
By Lemma 2.11 and (4.4), for a given n there are finitely many v with

mv > 1, so ρn is well-defined, given choices of the constants δ′, E1, E2 and
E3.

5 Bounding the maximum value of ρn

Recall that the idea of ρn is to send a geometric sequence of annuli of points in
�v at distance [a−(i+1), a−i ] for i = 1, . . . , k (and suitable k) to an arithmetic
sequence of annuli of points at distance [ i+1

2k+1 ,
i

2k+1 ]. In particular, for some
v /∈ Tδ′ but with �v � 1, the smallest annulus in �v has size � a−n , so is
covered by boundedly many balls in Sn . The ρn value of these balls will be
� 1/n, giving a heuristic estimate ‖ρn‖∞ � 1/n. This is essentially the worst
case, as we now show.

Theorem 5.1 For ρn as in Sect. 4, for large enough E2 and for any E1, E3, δ
′,

limn→∞ ‖ρn‖∞ = 0.
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Proof Given A ∈ Sn , consider the path [v0, π(A)] = {v0, v1, . . . , vk = π(A)}
in V0T . By (4.5), (4.6), (4.8),

ρn(A) = E1a
−n

k∏
i=0

ρn
vi

(A). (5.2)

In the proof we track the dependence of constants on E1, E2, E3, δ
′.

Step 1: Let t ≥ 0 be maximal with vt ∈ Tδ′ . As Tδ′ is finite, t ≤ C1 for
some constant C1 = C1(δ

′). For i ≤ t , we have fvi (Wvi ,A) = 1 and Dvi � 1.
For i < t , diamWvi ,A � 1 and diam hvi (Wvi ,A) � 1. So

t−1∏
i=0

ρn
vi

(A) �C(δ′,E3) 1 and ρn
vt

(A) �C(δ′,E3)

diam hvt (Wvt ,A)

diamWvt ,A
. (5.3)

Step 2: A useful fact is the following: by Lemma 2.10, for 0 ≤ i < k, as
Wvi ,A = �e(vi )→A

= �evi+1
we have

1 ≤ Dvi+1

diamWvi ,A
≤ K4. (5.4)

Step 3: Consider the definition of ρn
v in (4.8). Suppose for some i ∈

{0, . . . , k} we have d(A,U←vi ) ≤ E2a−n or mvi ≤ 1, then let s be the
minimal such i . If no such i exists, set s = k + 1. If s ≤ k then either

(1) d(A,U←vs ) ≤ E2a−n , and so ρn
vi

(A) = 1 for all i ≥ s,
(2) mvs ≤ 1 so Dvs � a−n , and so s ≤ k ≤ s + C for some C by

Lemmas 2.11 and 4.1. For each i ≥ s we havemvi ≤ C , diam hvi (Wvi ,A) � 1,

and
Dvi

diamWvi ,A
� a−n

a−n = 1. If mvi ≤ 1 then ρn
vi

(A) = 1, else mvi ∈ (1,C] thus
fvi (Wvi ,A) � 1 and so ρn

vi
(A) �C(E3) 1 also.

Therefore in either case (1) or (2) we have

k∏
i=s

ρn
vi

(A) ≤ C2 = C2(E3). (5.5)

Step 4: Now for every t < i < s we claim that

diam hvi (Wvi ,A)

fvi (Wvi ,A)
≤ C

mvi

. (5.6)

First, if i < k then by Lemma 2.7 the relative distance of Wvi ,A = �evi+1
and

�evi
is bounded below. If i = k < s then as d(A,U←vk ) > E2a−n we have
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that the relative distance of Wvk ,A = BA and �evk
is bounded below by the

definition of BA, provided we fix E2 := K7 + 2 say, by Lemma 4.1. Since
uniformly quasisymmetric maps uniformly distort relative distances (e.g. [1,
Lemma 3.2]),

diam hvi (Wvi ,A)

mvi dvi (hvi Wvi ,A, hvi�evi
)
≤ C3(E2)

mvi

.

Second, if dvi (hvi Wvi ,A, hvi�evi
) ≤ a−mvi then for i < k since the rel-

ative distance of Wvi ,A and �evi
is ≥ 1/C , so the relative distance of

hvi Wvi ,A and hvi�evi
is ≥ 1/C , but this last relative distance is also ≤

a−mvi / diam hvi Wvi ,A, we thus have diam hvi Wvi ,A � a−mvi . If i = k, as
Wvi ,A is a ball of radius a−n , diam hvi (Wvi ,A) � (a−n/Dvi )

τ � a−mvi . So for
i < k or i = k in this second case we have

diam hvi (Wvi ,A)

fvi (Wvi ,A)
= diam hvi (Wvi ,A) ≤ Ca−mvi ≤ C

mvi

.

Step 5: By (5.2), (5.3), (5.5), (5.6) we have

ρn(A) �C(E1,δ′,E3,E2) a
−n · diam hvt (Wvt ,A)

diamWvt ,A
·

s−1∏
i=t+1

CDvi

mvi diamWvi ,A

If s − 1 < t + 1 this last product is vacuous. In this case by (4.3)

ρn(A) �C(δ′)
a−n

(diamWvt ,A)1−τ
� a−n

a−n(1−τ)
= a−τn � 1

n
.

So we may assume t + 1 ≤ s − 1.
By (5.4) for t + 1 ≤ i ≤ s − 1 we have that CDvi / diamWvi−1,A is

bounded. As the sequence mvi is roughly decreasing at least linearly in i
(by (2.13)), for all but boundedly many terms at the tail of the sequence
i = t + 1, . . . , s − 1 we have that CDvi /(mvi diamWvi−1,A) ≤ C2/mvi ≤ 1.
Once mvi is small (but still ≥ 1), Dvi � a−n and diamWvi−1,A � a−n also,
so CDvi /(mvi diamWvi−1,A) � 1. Taken together, applying these bounds for
i = t + 2, . . . , s − 1, we have

ρn(A) � a−n · diam hvt (Wvt ,A)

diamWvt ,A
· Dvt+1

mvt+1

· 1

diamWvs−1,A

� diam hvt Wvt ,A

mvt+1
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by (5.4) and diamWvs−1,A � a−n .
If mvt+1 ≥ τn/2, then ρn(A) � 1

n . Otherwise mvt+1 < τn/2 so as Dvt � 1
we then have by (4.3) that diam hvt Wvt ,A � Dτ

vt+1
� a−τn+mvt+1 ≤ a−τn/2

and ρn(A) � a−τn/2

1 � 1
n .

As in either case ρn(A) � 1
n , we are done. ��

6 Admissibility

Our goal in this section is to show that for δ < δ0 there are suitable choices of
parameters δ′, E1, E3 making the weight ρn : Sn → R as defined as in (4.5)
admissible for �δ . We now treat the parameter E2 as a fixed constant given by
Sect. 5.

Theorem 6.1 For δ < δ0 fixed, we can find δ′ ∈ (0, δ] and E1, E3 large
enough independent of n so that ρn defined as in Sect. 4 is �δ-admissible for
all n.

Recall from (4.2) that

Tδ = Conv ({v0} ∪ {v ∈ T : diam�v > δ})
is the convex hull of the finite set of vertices in T whose limit sets are large.

Curves in �δ need not be embedded and can start and end at arbitrary points
in X ; the following proposition finds a nice subcurve for any γ ∈ �δ .

Proposition 6.2 There exist δ′ ∈ (0, δ] so that:
Given γ ∈ �δ , we can find an arc γ̂ ∈ �δ′ so that

(1) γ̂ is contained in the image of γ .
(2) γ̂ is contained in Uv→ and has endpoints at least δ′ apart in �v , for some

v ∈ Tδ′ .

Before proving this, in the following lemmawe relate points in X with points
in T̄ , the compactification of T . For x ∈ X , let�(x) ⊂ T̄ be the corresponding
point(s) in T̄ determined by Lemma 2.6:�(x) is either a unique point in ∂∞T ,
a closed ball of radius 1 around a unique e ∈ V1T (with x ∈ �e), or a unique
v ∈ V0T (with x ∈ �v).

Lemma 6.3 For G � T as in Proposition 2.5, and � as above, if C ⊂ X is
connected, then �(C) := ⋃

x∈C �(x) is connected.

Proof Suppose �(C) is disconnected. Then as �(C) ⊂ T̄ is a union of a
subset of V0T , radius-1 balls around vertices in V1T , and points of ∂∞T , then
there is a vertex e ∈ V1T \�(C) so that�(C)meets more than one component
of T̄ \{e}. Since C ∩�e = ∅, this means that C meets at least two components
of X\�e, and so C is not connected. ��
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826 M. Carrasco, J. M. Mackay

Proof of Proposition 6.2 First, find an arc, that is, an embedded path γ1 :
[0, 1] → X in the image of γ with endpoints diam(γ ) apart.

Let w′
0 ∈ V0T be the closest point to v0 in �(γ1) ⊂ T̄ , following the

notation of Lemma 6.3. We call w ∈ V0T a child of w′
0 if dT (v0, w) =

dT (v0, w
′
0) + 2.

If γ1 meets �w′
0
in exactly one or two points, those point(s) lie in some

�e ⊂ �w′
0
for some e ∈ V1T adjacent tow′

0 with dT (v0, e) = dT (v0, w
′
0)+1.

The points of �e split γ1 into two or three subarcs each living in some Uw→
for some childw ofw′

0. Necessarily, at least one of these subarcs has endpoints
δ/3 apart. Let γ2 be such a subarc of γ1, and let w0 ∈ V0T be the child of w′

0
with γ2 ⊂ Uw0→.

If γ1 meets �w′
0
in more than two points, let γ2 = γ1 and let w0 = w′

0. In
either case, γ2 meets �w0 in more than two points, has endpoints at least δ/3
apart, and γ2 lies in Uw0→.

If there is a path in T̄ \{w0} from�(γ2(0)) to�(γ2(1)), then as γ2 is an arc,
there is e ∈ V1T and two (possibly equal) children w′, w′′ of w0 so that γ2
consists of an initial subarc inUw′→ that joins γ2(0) to a point of �e, a subarc
γ̂ inUw0→ joining the endpoints of�e, and a final subarc from the other point
of �e to γ2(1) in Uw′′→. Therefore by Lemma 2.10

δ

3
≤ d(γ2(0), γ2(1)) ≤ diamUw′→ + diam�e + diamUw′′→ �2K4+1 diam�e,

so γ̂ satisfies our desired property.
So we now assume that w0 disconnects �(γ2(0)) from �(γ2(1)). This

includes the case that w0 is in one of these sets; if it is in both, γ2 already has
our property.

Let t0 (resp. t1) be the first (resp. last) time γ2 meets �w0 . If t0 > 0, the
subarc γ2|[0,t0] lives in Uw−1→ for some child w−1 of w0. Let t−1 be the
first time γ2 meets �w−1 , and if t−1 > 0 let w−2 be the child of w−1 with
γ2|[0,t−1] ⊂ Uw−2→. Similarly, if t1 < 1, let w1 be the child of w0 with
γ2|[t1,1] ⊂ Uw1→, let t2 be the last time γ2 meets �w1 , and if t2 < 1 let w2 be
the child of w1 with γ2|[t2,1] ⊂ Uw2→.

We claim that we can take δ′ = δ/100K1K4 and our desired arc γ̂ to be
γ2|[ti ,ti+1] for i = −1, 0 or 1. Note these subarcs if defined have endpoints
in �wi and live in Uwi→ for i = −1, 0, 1 respectively. For i = −1, 0, 1
let εi = d(γ2(ti ), γ2(ti+1)), when defined. Certainly if ε0 > δ′ we can take
γ̂ = γ2|[t0,t1], so assume ε0 ≤ δ′.

If w1 is defined, either ε1 > δ′ and we are done, or ε1 ≤ δ′. If w2 is defined
then the tail γ2|[t2,1] has diameter

≤ diamUw2→ ≤ K4 diam�ew2
≤ K4K1d(�ew1

, �ew2
) ≤ K4K1ε1 ≤ δ/100
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by Lemmas 2.7 and 2.10. Likewise, if w−1 is defined, either ε−1 > δ′ and
we are done, or ε−1 ≤ δ′, and then if w−2 is defined the subarc γ2|[0,t−1] has
diameter ≤ δ/100. If we reach this point, then whether or not wi exist for
i = −2,−1, 1, 2, we deduce by the triangle inequality that the endpoints of
γ2 have distance ≤ δ/100+ ε−1 + ε0 + ε1 + δ/100 < δ/10, a contradiction.

So for δ′ = δ/100K1K4, we have found a subarc γ̂ which has endpoints in
some �v, v ∈ Tδ′ , which are δ′-separated, and γ̂ ⊂ Uv→. ��

We will use the following observation about the relative positions of cut
pairs.

Lemma 6.4 There exists C so that if v, w ∈ V0T with v ∈ [v0, w], v �= v0,
dT (v, w) = 2 and �ew = {p+, p−} ⊂ �v , then

1

C
≤ d(hv p+, hv�ev )

d(hv p−, hv�ev )
≤ C.

Proof By symmetry it suffices to prove that d(hv p+, hv�ev ) � d(hv p−, hv

�ev ).
Choose (not necessarily distinct) q−, q+ ∈ �ev so that we have d(hv p+, hv

�ev ) = d(hv p+, hvq+) and d(hv p−, hv�ev ) = d(hv p−, hvq−).
By Lemmas 2.11 and 2.10 diam�ew � diam�ev so by Lemma 2.7

d(p−, p+) = diam�ew � d(�ew, �ev ). (6.5)

In particular, d(p−, p+) � d(p−, q−), and so by quasisymmetry d(hv p−, hv

p+) � d(hv p−, hvq−).
Thus

d(hv p+, hv�ev ) = d(hv p+, hvq+) ≤ d(hv p+, hv p−) + d(hv p−, hvq+)

� d(hv p−, hvq−) + d(hv p−, hvq+). (6.6)

If q− = q+ we are done as d(hv p−, hvq−) = d(hv p−, hv�ev ).
Suppose q− �= q+. Since d(hv p+, hvq+) ≤ d(hv p+, hvq−), by the qua-

sisymmetry of h−1
v , d(p+, q+) � d(p+, q−). Combining this with (6.5),

diam�ev = d(q+, q−) ≤ d(q+, p+) + d(p+, q−) � d(p+, q−)

≤ d(p+, p−) + d(p−, q−) � d(�ew , �ev ) + d(p−, q−)

≤ 2d(p−, q−),

therefore d(hvq+, hvq−) � d(hv p−, hvq−). By Lemma 2.10, d(p−, q+) ≤
diam�v � d(q+, q−), so d(hv p−, hvq+) � d(hvq+, hvq−). Therefore

d(hv p−, hvq+) � d(hvq−, hvq+) � d(hv p−, hvq−),
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and applying this to (6.6) we are done. ��
Proposition 6.7 There are choices of parameters E1, E3 so that there exists
J > 0 so that for all v ∈ T , and any arc β joining �ev in Uv→, we have

∑
A∈Sn :A∩β �=∅

∏
w∈T0(v)

ρn
w(A) ≥ Jan diam�ev , (6.8)

where we take diam�ev0
:= 1. Moreover, if β is an arc in some Uv→, v ∈ Tδ′

with endpoints in �v that are δ′-separated, then

�ρn (β) ≥ 1. (6.9)

Proof We prove that (6.8) holds in stages. Before we begin, we summarise
the dependence of constants chosen in the proof. All constants, in partic-
ular C1, . . . ,C4 ≥ 1, depend on the data of our space and the constants
K1, . . . , K7 ≥ 1. We choose k0, k1 ∈ N with k0 := !loga(2aλ(K4 ∨ 1

δ′ )
1/τ )"

and k1 := !loga(6K2K3)". We choose j0 ∈ N based on Lemma 6.4. We intro-
duce a parameter E4 which is chosen large enough depending on j0, k0, k1,
and set J := 1/E4. We find a constant C∗

1 = C∗
1 (J ). The parameter E3 is

chosen large enough depending on j0, k0,C∗
1 (and C1,C4). Finally we find

C∗
2 = C∗

2 (δ
′) and set E1 := 1/(C∗

2 Jδ′) = E4/C∗
2δ

′.
Step 1: Suppose v is a vertex with diam�v ≤ E4a−n for a choice of E4 ≥ E2
below. (The important case is when v is the child of some v̂ with diam�v̂ ≥
E4a−n .) Thus diam�ev ≤ E4a−n , so an diam�ev ≤ E4.
In the left hand side of (6.8), for any A meeting �ev (as β does), we have

that d(A,U←v) = 0 so ρn
v (A) = 1. Also, for allw ∈ T0(v)\{v},π(A) belongs

to [v0, v] so w /∈ [v0, π(A)], thus Ww,A = ∅ and ρn
w(A) = 1 also. Therefore,

the left-hand side is ≥ 1, and so (6.8) holds for J = 1/E4.
Step 2: Suppose v has diam�v ∈ [E4a−n, δ′) and all children of v satisfy
(6.8) with J . Note that v �= v0.

The idea is that by requiring E3 large enough, J doesn’t get worse in our
estimate for (6.8).

If A ∈ Sn meets β ⊂ Uv→ and has Wv,A = ∅, then as v /∈ [v0, π(A)], A
must also meet U←v. If d(A, �ev ) ≥ 4a−n ≥ 2 diam A then for any p ∈ A,
and using K3 ≥ 1 from Lemma 2.9,

d(A, �ev ) �2 d(p, �ev ) �K3 d(p,U←v) ≤ diam A ≤ 2a−n.

Thus we conclude that

d(A, �ev ) ≤ 4K3a
−n. (6.10)
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The path β joins the endpoints of �ev , travelling through �v with subarcs
passing through Uw→ for various children w of v.

Let k0, k1 be constants chosen as above, then add the conditionmv > k0+k1
to E4, so that 0 ≤ k0 ≤ mv − k1 ≤ mv .

For k ∈ {k0, . . . ,mv − k1}, consider the points of Xv = hv�v at distance
(a−k, a−k+1] from hv�ev , and call this set Yk . By Lemma 6.4, there exists j0
so that if a child w of v has �ew = {p+, p−}, and p+ ∈ Yk, p− ∈ Yl , then
|k − l| ≤ j0.

Thepair�ev has diam�ev ≥ 1
K4

diam�v byLemma2.10, sodiam hv�ev ≥
λ−1K−1/τ

4 by (4.3). Note that a−k0+1 ≤ 1
2λ

−1K−1/τ
4 by the choice of k0, so

each Yk, k ≥ k0, consists of two disjoint balls centred on hv�ev .
Let M := �(mv − k0− k1− 2 j0− 2)/(2 j0+ 1)�; add the condition that E4

is large enough so that M ≥ 1.
For each i ∈ 0, . . . , M , consider

k = k(i) := (2 j0 + 1)i + j0 + 1+ k0 ∈ {k0 + ( j0 + 1), . . . ,mv − k1 − ( j0 + 1)},

and the collection Bi of subarcs of β that are either (i) in �v with hv-image
in Yk , or (ii) join �ew in some Uw→ with w a child of v and hv�ew meets or
jumps over Yk . Here “jumps over” means that one end point lies in

⋃
s>k Ys

and the other in
⋃

s<k Ys . Note that by the choices of M and k = k(i), the
collections Bi are disjoint, and if hv�ew jumps over Yk , both points of hv�ew
are in B(z, a−k0+1) for the same z ∈ hv�ev .

Subemma 6.11 For k1 ≥ loga(6K2K3), for any i = 0, . . . , M and any A ∈
Sn which intersects some arc in Bi , we have that π(A) ∈ T0(v).

Proof Case 1, A ∩ �v �= ∅: By the definitions of Bi , (4.4) and k,

d(hv(A ∩ �v), hv�ev ) ≥ a−k − diam hv(A ∩ �v)

≥ a−k − 1
2a

−mv ≥ a−mv

(
ak1+ j0 − 1

2

)
.

Thus by (4.3) and (4.4),

d(A, �ev ) ≥ d(A ∩ �v, �ev ) − diam A

≥ Dv

(
a−mv (ak1+ j0 − 1

2 )

λ

)1/τ

− 2a−n

≥ a−n
(
2ak1+ j0 − 1

)1/τ − 2a−n > 4K3a
−n

because k1 + j0 ≥ k1 ≥ loga(6K2K3) ≥ loga(6K3). Thus by (6.10) we
have Wv,A �= ∅ and as A ∩ �v �= ∅ we have v = π(a). (Note that therefore
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Wv,A = BA for a ball BA of radius a−n satisfying A ⊂ (K7 + 1)BA, so if a
collection of A’s covers β ′, then the corresponding collection of (K7+1)BA’s
also covers β ′.)

Case 2: For some child w of v, A intersects a subarc β ′ ⊂ Uw→ that
meets or jumps over Yk . The endpoints of hv�ew lie in

⋃k+ j0
s=k− j0

Ys , and both
endpoints have the same closest point in hv�ev . It suffices to show that Wv,A
is either BA (as π(A) = v) or �ew (as π(A) ∈ T0(w) but π(A) �= v). This
follows if we rule out π(A) ∈ [v0, v).

Similarly to Case 1,

d(hv�ew, hv�ev ) ≥ a−k− j0 ≥ a−mvak1

so d(�ew, �ev ) ≥ a−n
(
2ak1

)1/τ
. Since A ∩ β ′ ⊂ Uw→, Lemma 2.8 gives

d(A, �ev ) ≥ d(Uw→,U←v) − diam A ≥ 1

K2
d(�ew, �ev ) − 2a−n

≥ a−nK−1
2 (2ak1)1/τ − 2a−n > 4K3a

−n,

where the last inequality uses k1 ≥ loga(6K2K3), and so by (6.10)
Wv,A �= ∅. ��

A jump β ′ ∈ Bi going through some Uw→ is large if there is some A ∈ Sn
with A ∩ β ′ �= ∅ and π(A) ∈ T0(w). In this case, by Lemma 2.10 and
Lemma 4.1,

diam�ew ≥ 1

K4
diamUw→ ≥ 1

K4
diam�π(A) ≥ 1

K4K7
a−n. (6.12)

Suppose {β j } ⊂ Bi are the large jumps in Bi , going through Uw j→ for w j
children of v. Consider the sets Ci, j := {A ∈ Sn : A ∩ β j �= ∅} for each j . If
A ∈ Ci, j ∩ Ci, j ′ for j �= j ′ then A intersects both Uw j→ and Uw j ′→ ⊂ U←w j

so by Lemma 2.9 d(A, �ew j
) � a−n . Therefore by (6.12), Lemma 2.7 and the

doubling of Xv we have that there exists C1 independent of v, i, j so that any
A appears in at most C1 of these sets.
For each choice of i (which fixes k), we either have ‘many’ or ‘few’ large

jumps.
Case of many large jumps: Suppose

∑
j diam hv(�ew j

) ≥ 1
2a

−k . Consider a
given (large) jump hv�ew j

. There is a constant C2 so that there are at most C2

many A ∈ Sn with A∩β j �= ∅ and π(A) = v; for such A,
∏

u∈T0(w j )
ρn
u (A) =

1. By the Step 2 hypothesis
∑

A∈Sn :A∩β∩Uw j→�=∅
∏

u∈T0(w j )
ρn
u (A) ≥ Jan

diam�ew j
. So if diam�ew j

≥ (2C2/J )a−n then we have
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∑
A∈Sn :π(A)�=v,
A∩β∩Uw j→�=∅

∏
u∈T0(w j )

ρn
u (A) ≥ 1

2
Jan diam�ew j

.

Moreover, when π(A) �= v in this sum Wv,A = �ew j
so

∑
A∈Sn :A∩β∩Uw j→�=∅

∏
u∈T0(v)

ρn
u (A) =

∑
A∈Sn :A∩β∩Uw j→�=∅

ρn
v (A)

∏
u∈T0(w j )

ρn
u (A)

≥
∑

A ∈ Sn : π(A) �= v,

A ∩ β ∩Uw j→ �= ∅

ρn
v (A)

∏
u∈T0(w j )

ρn
u (A)

≥
E3Dv diam hv(�ew j

)

mva−k+ j0 diam�ew j

∑

A ∈ Sn : π(A) �= v,

A ∩ β ∩Uw j→ �= ∅

∏
u∈T0(w j )

ρn
u (A)

≥ E3Dv

mva−k+ j0

1

2
Jan diam hv(�ew j

).

If diam�ew j
< (2C2/J )a−n holds, then diam�ew j

�C(J ) a−n . So for any
A ∈ Sn with A ∩ β ∩ Uw j→ �= ∅ and π(A) = v (and so Wv,A = BA with
diam BA � a−n), by the uniform quasisymmetry of hv we have

diam hv�ew j

diam hvBA
� 1 �

diam�ew j

diam BA
,

thus, at the cost of a constantC∗
1 = C∗

1 (J ),we can replacediam hvBA / diam BA
in the relevant ρn

v (A) by diam hv�ew j
/ diam�ew j

, and so induction again
gives

∑

A ∈ Sn :
A ∩ β ∩Uw j→ �= ∅

∏
u∈T0(v)

ρn
u (A) =

∑

A ∈ Sn :
A ∩ β ∩Uw j→ �= ∅

ρn
v (A)

∏
u∈T0(w j )

ρn
u (A)

≥
E3Dv diam hv(�ew j

)

mva−k+ j0C∗
1 diam�ew j

∑

A ∈ Sn :
A ∩ β ∩Uw j→ �= ∅

∏
u∈T0(w j )

ρn
u (A)

≥ E3Dv

C∗
1mva−k+ j0

Jan diam hv(�ew j
).

Summing over all large jumps {β j } ⊂ Bi we have

∑
A∈⋃

j Ci, j

∏
u∈T0(v)

ρn
u (A) ≥ 1

C1

∑
j

∑
A∈Ci, j

∏
u∈T0(v)

ρn
u (A)
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≥ 1

C1

∑
j

E3Dv

(C∗
1 ∨ 2)mva−k+ j0

Jan diam hv(�ew j
)

≥ E3Dv

C1(C∗
1 ∨ 2)mva−k+ j0

Jan
a−k

2

= E3Dv

2C1(C∗
1 ∨ 2)mva j0

Jan.

Case of few large jumps: We have that
∑

j diam hv(�ew j
) < 1

2a
−k , but the

arcs and jumps in Bi must total at least a−k+1− a−k ≥ a−k in diameter. Thus
the arcs and small jumps (that is jumps β ′ where any A ∈ Sn with A∩β ′ �= ∅
has π(A) = v) must have total diameter in hv�v at least 1

2a
−k .

Supposewe have a small jumpβ ′ through someUw′→,w′ a child of v. The A
which coverβ ′ each have a ball BA centred at a point of�v atmost K7a−n from
the centre of A, so β ′ is in the (K7 + 1)a−n neighbourhood of �v . Therefore
by Lemma 2.9 we have β ′ is in the K3(K7 + 1)a−n neighbourhood of �ew′ ,
so diam�ew′ ≤ 2K3(K7 + 1)a−n , and thus by Lemma 2.10 diamUw′→ ≤
2K4K3(K7+1)a−n . So there existsC3 ≥ (K7+1) so that if Ameets the small
jump β ′, thenC3BA covers the entire small jump including its endpoints. Here
for a ball B = B(x, r) and C > 0, we set CB := B(x,Cr).

In the image then, if there is a sequence of arcs and small jumps connecting
points at least some distance L apart, then the sum of diam hv(C3BA) for those
A covering the corresponding arcs in Bi must total at least L . So as we do not
have many large jumps, we must have that

∑
A∈Sn(Bi ,v) diam hv(C3BA) ≥

1
2a

−k , where Sn(Bi , v) is defined to be the set of all A ∈ Sn so that π(A) = v

and A ∩ β ′ �= ∅ for some β ′ ∈ Bi .
By uniform quasisymmetry diam hv(C3BA) �C4 diam hv(BA). Putting it

together,

∑
A∈Sn(Bi ,v)

∏
u∈T0(v)

ρn
u (A) =

∑
A∈Sn(Bi ,v)

ρn
v (A) ≥

∑
A∈Sn(Bi ,v)

E3Dv diam hv(BA)

mva−k+ j0 diam BA

≥ 1

C4

∑
A∈Sn(Bi ,v)

E3Dv diam hv(C3BA)

mva−k+ j02a−n

≥ E3Dva−k

4C4mva−k+ j0a−n
= E3Dv

4C4mva j0
an.

As for each i there are either many large jumps or not, we have:

∑
A∈Sn :A∩β �=∅

∏
w∈T0(v)

ρn
w(A) ≥

M∑
i=0

E3Dv

mva j0

(
J

2C1(C∗
1 ∨ 2)

∧ 1

4C4

)
an
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= E3Dv(M + 1)

mva j0

(
J

2C1(C∗
1 ∨ 2)

∧ 1

4C4

)
an

≥ J

(
(M + 1)

4a j0(C1(C∗
1 ∨ 2) ∨ C4)mv

)
E3a

nDv.

By our earlier conditions on E4, we have that M = �(mv − k0 − k1 − 2 j0 −
2)/(2 j0+1)� satisfies M ≥ 1. Thus (M +1)/mv is bounded away from zero,
so we can and do require that E3 is large enough depending on j0,C1,C∗

1 ,C4
so that the term in parentheses is at least 1/E3 thus (6.8) holds for v with the
same J . Note that Dv = diam�v ≥ diam�ev .
Step 3: Suppose v has diam�v ≥ δ′ and all children satisfy (6.8) for some J .

The argument is identical to that of step 2 until we apply the definition of fv
from (4.7), and as we don’t resize the annuli it suffices to consider the largest
annulus Yk with i = 0, k = j0+1+k0.We now indicate the slight differences.
Case ofmany large jumps {β j } ⊂ B0: If a given large jumpβ j has diam�ew j

≥
(2C2/J )a−n then

∑
A∈Sn :

A∩β∩Uw j→�=∅

∏
u∈T0(v)

ρn
u (A) ≥

∑
A∈Sn :π(A) �=v
A∩β∩Uw j→�=∅

ρn
v (A)

∏
u∈T0(w j )

ρn
u (A)

≥
E3Dv diam hv(�ew j

)

1 · diam�ew j

∑
A∈Sn :π(A) �=v
A∩β∩Uw j→�=∅

∏
u∈T0(w j )

ρn
u (A)

≥ E3Dv

1

1

2
Jan diam hv(�ew j

).

While if diam�ew j
< (2C2/J )a−n then, for the same C∗

1 = C∗
1 (J ) as before

∑
A∈Sn :

A∩β∩Uw j→�=∅

∏
u∈T0(v)

ρn
u (A) ≥

E3Dv diam hv(�ew j
)

1 · C∗
1 diam�ew j

∑
A∈Sn :

A∩β∩Uw j→�=∅

∏
u∈T0(w j )

ρn
u (A)

≥ E3Dv

C∗
1

Jan diam hv(�ew j
).

Summing over all large jumps {β j } ⊂ B0, as k = j0 + 1+ k0 we have

∑
A∈⋃

j Ci, j

∏
u∈T0(v)

ρn
u (A) ≥ 1

C1

∑
j

E3Dv

(C∗
1 ∨ 2) · 1 Ja

n diam hv(�ew j
)

≥ E3Dv

C1(C∗
1 ∨ 2) · 1 Ja

n a
−( j0+1+k0)

2
.
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Case of few large jumps {β j } ⊂ B0: The argument is the same, giving the
bound

∑
A∈Sn(B0,v)

∏
u∈T0(v)

ρn
u (A) ≥

∑
A∈Sn(B0,v)

E3Dv diam hv(BA)

1 · diam BA

≥ 1

C4

∑
A∈Sn(B0,v)

E3Dv diam hv(C3BA)

1 · diam BA

≥ E3Dva−( j0+1+k0)

2C4 diam BA
≥ E3Dva−( j0+1+k0)

4C4
an.

As B0 either has many large jumps or not, we have:

∑
A∈Sn :A∩β �=∅

∏
w∈T0(v)

ρn
w(A) ≥ E3Dva

−( j0+1+k0)
(

J

2C1(C∗
1 ∨ 2)

∧ 1

4C4

)
an

≥ J

(
a−( j0+1+k0)

4(C1(C∗
1 ∨ 2) ∨ C4)

)
E3a

nDv.

Since Dv = diam�v ≥ diam�ev , provided E3 is required to be large enough
depending only on j0, k0,C1,C∗

1 ,C4 we get (6.8) for v with the same value
of J . As this point we fix the value of E3.
Conclusion: So we have shown that (6.8) for all v ∈ T .

Suppose now that the curve β has endpoints in �v , v ∈ Tδ′ , that are δ′
separated, but not necessarily agreeing with �ev . By the bi-Hölder estimates
on hv for such v, this implies that the distance between the hv-images of the
endpoints of β is ≥ λ−1(δ′)1/τ > 0. Notice that in step 3 the location (if
defined) of �ev was not relevant, only that β crossed an annulus of width pro-
portional to Dv . So as we already required k0 to satisfy a−k0+1 ≤ 1

2λ
−1(δ′)1/τ ,

we can set i = 0, k = j0 + 1+ k0 and let Yk be all points in hv�v at distance
in (a−k, a−k+1] from {hvβ(0), hvβ(1)}; note that the balls of radius a−k+1

centred on hv�v are disjoint. Step 3 then gives, with the same choice of E3,

∑
A∈Sn :A∩β �=∅

∏
w∈T0(v)

ρn
w(A) ≥ JanDv.

It remains to bound �ρn (β). Since β is inUv→, we have for any A ∈ Sn with
A∩β �= ∅ thatπ(A) ∈ [v0, v]. Thismeans that ifw ∈ V0T hasρn

w(A) �= 1 then
w ∈ T0(v) or w ∈ [v0, v]. Write {v0, v1, . . . , vm = v} ⊂ V0T for the vertices
of [v0, v]; these are in Tδ′ . For i = 0, . . . ,m − 1, we have diamWvi ,A �δ′ 1,
so diam hvi Wvi ,A � 1, and Dvi � so there is some constant C ′ depending on
δ′ so that ρn

vi
(A) �C ′ E3. Thus, using the trivial bound m ≤ |Tδ′ | and setting
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C∗
2 := (C ′E3)

|Tδ′ |,

�ρn (β) = E1a
−n

∑
A∈Sn :A∩β �=∅

∏
w∈V0T

ρn
w(A)

= E1a
−n

∑
A∈Sn :A∩β �=∅

( m−1∏
i=0

ρn
vi

(A)

)( ∏
w∈T0(v)

ρn
w(A)

)

≥ E1a
−n

∑
A∈Sn :A∩β �=∅

(
C ′E3

)|Tδ′ |
( ∏

w∈T0(v)

ρn
w(A)

)

≥ E1a
−nC∗

2 Ja
nDv ≥ E1C

∗
2 Jδ′ ≥ 1,

thanks to our choice of E1 := 1/(C∗
2 Jδ′). ��

Admissibility now follows.

Proof of Theorem 6.1 For δ < δ0, let δ′ > 0 be chosen by Proposition 6.2, and
then let E1, E3 be given by Proposition 6.7. By Proposition 6.2(2), any curve
γ ∈ �δ has a subarc γ̂ ∈ �δ′ , which Proposition 6.7 shows has �ρn (γ̂ ) ≥ 1,
so �ρn (γ ) ≥ �ρn (γ̂ ) ≥ 1. Therefore ρn is �δ-admissible. ��

7 Volume

It remains to bound the volume of the weights ρn . For v ∈ V0T , recall that
T0(v) is the set of v and its descendants in V0T . Let Sn(v) := π−1(T0(v)),
and S0

n (v) := π−1(v). Note that for any v ∈ T we have the partition

Sn(v) = S0
n (v) �

⊔
w child of v

Sn(w). (7.1)

We define for v ∈ T ,

Vn(v) := E p
1 a

−np
∑

A∈Sn(v)

∏
w∈T0(v)

ρn
w(A)p. (7.2)

Observe that the p-volume of ρn is, by definition,

Volp(ρn) =
∑
A∈Sn

ρn(A)p = E p
1 a

−np
∑
A∈Sn

∏
v∈V0T

ρn
v (A)p = Vn(v0). (7.3)

Thegoal of the section is the following, givenfixedparameters δ′, E1, E2, E3.

Theorem 7.4 We have Vn(v0) = Volp(ρn) bounded independently of n.
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836 M. Carrasco, J. M. Mackay

We are going to set up an induction to bound the quantities Vn(v). What is
important here is the relative size of Dv and a−n: for a given n and v ∈ V0T ,
our cover ofUv→ by balls of radius a−n is, if we rescaleUv→ by 1/Dv , like a
cover of 1

Dv
Uv→ by balls of radius a−n/Dv , and the corresponding p-volume

is scaled by 1/Dp
v . Let tv,n = �n + loga Dv�, then the balls in the rescaled

cover are approximately of size a−tv,n .
When t ≥ t0 for some fixed constant t0 ∈ Z set below, and tv,n = t for

some n, v, we are covering Uv→ by sets significantly smaller than Uv→, and
estimating Vn(v) is amenable to induction; the relevant quantity we try to
bound is the following:

Definition 7.5 For t ∈ Z, if t < t0 set V̂t = 1, otherwise let V̂t be the
supremum of Vn(v)/Dp

v over all n, over all v ∈ V0T \Tδ′ with tv,n = t .

As an initial observation, for a given t there is an easy uniform bound on
Vn(v)/Dp

v with tv,n = t .

Lemma 7.6 For each t ∈ Z fixed, V̂t < ∞.

Proof The claim is trivial for t < t0. We fix t ≥ t0.
Suppose for a given n that v ∈ T \Tδ′ has tv,n = t , i.e. �n + loga Dv� = t ,

so a−np/Dp
v � a−tp, and

Vn(v)

Dp
v

� a−tp
∑
A∈Sn

∏
w∈T0(v)

ρn
w(A)p. (7.7)

By definition, Sn(v) consists of a collection of balls of radius a−n with
centres separated by a−n in Uv→ (not quite a cover since balls close to �ev
will not be included).As X isAhlfors regular, andbyLemma2.10diamUv→ �
diam�v = Dv , the number of such A included is bounded above by a constant
depending on Dv/a−n � at , i.e., depending only on t .

For a given w ∈ T0(v), the only way that ρn
w(A) �= 1 is if d(A,U←w) >

E2a−n and w ∈ [v, π(A)]. The first condition and Lemma 2.10 implies that
diam�w � a−n . The second condition and Lemma 2.11 implies that

a−t � a−n

Dv

� diam�w

diam�v

� e−εdT (v,w),

and so dT (v, w) is bounded by a constant depending on t . We have shown that
the number of terms in the sum and in the product on the right-hand side of
(7.7) are both bounded by a constant depending on t , and not on n.

It remains to show that ρn
w(A) is bounded. This follows the argument in

the proof of Theorem 5.1. For those w that are in T0(w′) for some w′ with
d(A,U←w′) ≤ E2a−n or mw′ ≤ 1, then by cases (1) and (2) of Step 3 of the
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proof ofTheorem5.1,ρn
w(A) ≤ C(E3). For all otherw,wehaved(A,U←w) >

E2a−n andmw > 1, and by (5.6) in Step 4 of the proof of Theorem5.1,we have
diam(hwWw,A)/ fw(Ww,A) � 1/mw. Moreover, by Lemma 2.11 Dw � Dv

and diamWw,A � a−n , Dw/ diamWw,A � Dv/a−n � at . So

ρn
w(A) = E3Dw

diamWw,A
· diam hw(Ww,A)

fw(Ww,A)
� at · 1

mw

� at ,

which is a constant bounded in terms of t .
So we conclude that Vn(v)/Dp

v is bounded by a constant depending on t ,
independent of n. ��

We are going to bound Vn(v)/Dp
v in two stages: a general inductive step

using V̂t when v /∈ Tδ′ , then the finitely-many vertices of Tδ′ will be dealt with
using a weaker bound.

7.1 Volume bounds for v /∈ Tδ′

The goal of this subsection is to bound V̂t by induction on t , and thus to bound
Vn(v) for v /∈ Tδ′ . In fact, we show more.

Proposition 7.8 limt→∞ V̂t = 0.

There are two kinds of contribution to Vn(v), those coming from �v and
those coming from Uw→ for some child w of v. Now for fixed n, a child w

of v usually has �w smaller than �v , and so tw,n < tv,n , and we can use an
inductive bound to estimate the contribution of each child to Vn(v); we have
to treat carefully the finitely many children that are exceptions.

Note that if Sn(w) �= ∅ for w a child of v, then there exists A ∈ Sn(w) so
π(A) is a descendant of w, therefore by (2.13) and Lemma 4.1 diam�w ≥
1
K5

diam�π(A) ≥ 1
K5K7

a−n . Thus in the induction we are only interested in
finitely many w: let

C(v) =
{
w child of v : diam�w ≥ 1

K5K7
a−n

}
⊂ V0T .

For such a w, tw,n = �n + loga diam�w� ≥ �− log K5K7�; let
t0 := �− log K5K7�.

In our induction, the problem is that a child w of a given v ∈ T may have
tw,n ≥ tv,n . However, by Lemma 2.11(2.13) for

t� := log K5 + 1 ≥ 1
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838 M. Carrasco, J. M. Mackay

if w ∈ T0(v) then tw,n ≤ tv,n + t�. To set up the induction, we group together
the finitely-many large descendants of v, where “large” depends on a parameter
q ≤ t�: let

L∗(v, q) := {w ∈ T0(v)\{v} : ∃u ∈ T0(w), tu,n ≥ tv,n − q}
∪ (Tδ′ ∩ (T0(v)\{v})) , and

L(v, q) := L∗(v, q) ∩ C(v).

Note that as v /∈ Tδ′ , Tδ′ ∩ (T0(v)\{v}) = ∅, but we will also use these
definitions of L∗(v, q),L(v, q) later for more general v. There are uniform
bounds |L(v, q)| ≤ |L∗(v, q)| ≤ C(t�, δ′) for any v ∈ T : by (2.13) |L∗(v, q)|
is bounded by the sum of |Tδ′ | and the number of spaces Zw ⊂ Z which can
meet a ball of a radius depending on t� and K5. In the remainder of this
Sect. 7.1, v /∈ Tδ′ .

Write L(v) := L(v, 0),L∗(v) := L∗(v, 0). For each t ∈ Z define

V̂<t := max{V̂s : s < t},

and note that we immediately have:

Lemma 7.9 For t = tv,n = �n + loga Dv�, if w ∈ C(v)\L(v) then
Vn(w)/Dp

w ≤ V̂<t . More generally, if w ∈ C(v)\L(v, q), then Vn(w)/Dp
w ≤

V̂<(t−q).

If Dv is too close to a−n there isn’t space to do induction, so we fix

t ′0 := !τ−1(2+ loga(2λ))" ∈ N (7.10)

For any v ∈ T with tv,n ≥ t ′0, τ tv,n ≥ mv > 1 by (4.4), and therefore we
have that not only is |mv − τ tv,n| bounded by a universal constant, but also
1/C ≤ mv/τ tv,n ≤ C for some universal C > 1, i.e.

mv ≈ τ tv,n and mv � τ tv,n. (7.11)

Our main technical bound in this subsection is the following.

Proposition 7.12 There exists C depending on t� and the data of our con-
struction so that for any v /∈ Tδ′ with t := tv,n ≥ t ′0 and any q ≤ t�, we
have

Vn(v)

Dp
v

≤ C

t p−1 V̂<(t−q) + C

t p
∑

w∈L(v,q)

Vn(w)

Dp
w

.
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Proof We decompose Vn(v) as follows:

Vn(v) = E p
1 a

−np
∑

A∈Sn(v)

∏
w∈T0(v)

ρn
w(A)p

= E p
1 a

−np
∑

A∈S0
n (v)

ρn
v (A)p

︸ ︷︷ ︸
(I)

+ E p
1 a

−np
∑

w∈C(v)

∑
A∈Sn(w)

ρn
v (A)p

∏
u∈T0(w)

ρn
u (A)p

︸ ︷︷ ︸
(II)

.

(7.13)

and we proceed to bound (I ) and (I I ) in the following lemmas, whose proofs
we defer. (Recall that our parameters E1, E2, E3, δ

′ are now fixed constants.)

Lemma 7.14 There exists C so that for any v /∈ Tδ′ with t = tv,n ≥ t ′0 we
have

(I ) �C a−np + Dp
v

mp
v

.

Lemma 7.15 There exists C depending on t� so that for any v /∈ Tδ′ with
t = tv,n ≥ t ′0 and q ≤ t� we have

(I I ) �C a−np + Dp
v V̂<(t−q)

mp−1
v

+ Dp
v

∑
w∈L(v,q)

1

mp
v

· Vn(w)

Dp
w

.

We now combine these bounds. By (7.13) and Lemmas 7.14 and 7.15:

Vn(v)

Dp
v

� a−np

Dp
v

+ 1

mp
v

+ a−np

Dp
v

+ V̂<(t−q) · 1

mp−1
v

+
∑

w∈L(v,q)

1

mp
v

· Vn(w)

Dp
w

.

As t = tv,n ≥ t ′0 we have (7.11), so we can write this as

Vn(v)

Dp
v

� a−tp + 1

t p
+ 1

t p−1 V̂<(t−q) + 1

t p
∑

w∈L(v,q)

Vn(w)

Dp
w

� 1

t p−1 V̂<(t−q) + 1

t p
∑

w∈L(v,q)

Vn(w)

Dp
w

,
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840 M. Carrasco, J. M. Mackay

where we use that V̂<(t−q) ≥ 1, so

a−tp ≤ a−τ tp � 1

t p
� 1

t p−1 V̂<(t−q).

We have completed the proof of Proposition 7.12. ��
Proposition 7.12 applies as follows to prove that limt→∞ V̂t = 0.

Proof of Proposition 7.8 Note that by Lemma 7.6, for t ∈ Z with t0 ≤ t < t ′0
we have V̂t < ∞, so we can restrict to values of t ≥ t ′0 where Proposition 7.12
applies.

Our goal is to boundVn(v)/Dp
v in termsof V̂<t , by applyingProposition 7.12

boundedlymany times.As thefirst step, Proposition 7.12 for v andq = 0 gives:

Vn(v)

Dp
v

≤ C

t p−1 V̂<t + C

t p
∑

w∈L(v,0)

Vn(w)

Dp
w

.

Now considerw ∈ L(v, 0); some descendant u ofw has tu ≥ tv,n , so tw,n ≥
tv,n − t�, and also tw,n ≤ tv,n + t�. If tw,n < tv,n then as w ∈ C(v), tw,n ≥ t0
so Vn(w)/Dp

w ≤ V̂tw,n ≤ V̂<t . If tw,n ≥ tv,n , apply Proposition 7.12 to w with
q = tw,n − tv,n ≤ t� to get

Vn(w)

Dp
w

≤ C

t p−1
w,n

V̂<(tw,n−q) + C

t pw,n

∑
w′∈L(w,q)

Vn(w′)
Dp

w′

whereC is the constant from Proposition 7.12. Note thatL∗(w, q) ⊂ L∗(v, 0)
so these sums are getting smaller. If any w′ has tw′,n < tw,n − q = tv,n we
bound Vn(w′)/Dp

w′ ≤ V̂<t , otherwise we apply Proposition 7.12 to w′ with
“q”= tw′,n − (tw,n − q) = tw′,n − tv,n to bound the term, and continue this
process. Note that any summand Vn(w′′)/Dp

w′′ that appears hasw′′ ∈ L∗(v, 0)
and appears once. Since L∗(v, 0) has a uniform finite bound on its size, after
boundedly many steps this process terminates when there are no more vertices
w′′ with tw′′,n ≥ tv,n . At the end we have

Vn(v)

Dp
v

≤ C ′

t p−1 V̂<t

for a constant C ′. Taking the supremum over all n and all v with tv,n = t , we
get

V̂t ≤ C ′

t p−1 V̂<t ,
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so for t large the sequence V̂t is a decreasing function of t , hence the sequence
is uniformly bounded, and by the same inequality limt→∞ V̂t = 0. ��

We still have to prove the technical bounds of Lemmas 7.14 and 7.15.

7.1.1 Bound (I)

Proof of Lemma 7.14 We further split S0
n (v) = R(v) � R(v)c where R(v)

consists of those A ∈ S0
n (v) with d(A,U←v) > E2a−n , and R(v)c =

S0
n (v)\R(v).

(I ) = E p
1 a

−np
∑

A∈R(v)c

ρn
v (A)p + E p

1 a
−np

∑
A∈R(v)

ρn
v (A)p

� a−np
∣∣R(v)c

∣∣ + a−np
∑

A∈R(v)

(
diam hv(BA) · Dv

diam BA · fv(BA)

)p

(7.16)

as for A ∈ S0n(v), Wv,A = BA. Lemma 2.9 gives that any A ∈ R(v)c is a
distance ≤ K3E2a−n to �ev , so the doubling property of X gives

|R(v)c| ≤ C = C(E2, K3). (7.17)

The value of fv(BA) depends on dv(hvBA, hv�ev ), and sowewriteR(v) =
R(v, 1) � · · · �R(v,mv) �R(v,mv + 1) where

R(v, j) := {A ∈ R(v) : dv(hvBA, hv�ev ) ∈ (a− j , a− j+1]},

for 1 ≤ j ≤ mv andR(v,mv+1) = {A ∈ R(v) : dv(hvBA, hv�ev ) ≤ a−mv }.
So, pulling out for now the common factor a−npDp

v , the second term of (7.16)
is

∑
A∈R(v)

(
diam hv(BA)

diam BA · fv(BA)

)p

=
mv+1∑
j=1

∑
A∈R(v, j)

(
diam hv(BA)

diam BA · fv(BA)

)p

�
∑

A∈R(v,mv+1)

(diam hv(BA))Qv+p−Qv

a−np · 1

+
mv∑
j=1

∑
A∈R(v, j)

(diam hv(BA))Qv+p−Qv

a−npm p
v a− j p

. (7.18)
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Recall that by (4.3), diam hvBA ≤ a−mv/2. Since Sn is a boundedmultiplicity
cover of X and each BA ⊂ (K7 + 1)A the collection {BA : A ∈ S0

n (v)} has
bounded multiplicity, with constants depending only on X . Thus {hvBA : A ∈
S0
n (v)} is a bounded multiplicity collection of quasi-balls, and so the Ahlfors

Qv-regularity of Xv gives, for 1 ≤ j ≤ mv + 1,

∑
A∈R(v, j)

(diam hv(BA))Qv diam hv(BA)p−Qv

≤
∑

A∈R(v, j)

(diam hv(BA))Qva−mv(p−Qv)

� a−( j−1)Qv · a−mv(p−Qv).

(7.19)

So when j = mv + 1 the right-hand side is a−pmv . By (7.19) the second term
in (7.18) sums to

�
mv∑
j=1

a−( j−1)Qv · a−mv(p−Qv)

a−npm p
v a− j p

� a−mv(p−Qv)+np

m p
v

mv∑
j=1

a j (p−Qv)

� a−mv(p−Qv)+np

m p
v

· amv(p−Qv) = anp

m p
v

. (7.20)

Combining (7.16), (7.17), (7.18), (7.19), (7.20) and a−pmv � 1/mp
v we have

(I ) � a−np + a−npDp
v

(
a−pmv

a−np
+ anp

m p
v

)
� a−np + Dp

v · 1

mp
v

. (7.21)

��
7.1.2 Bound (II)

Proof of Lemma 7.15 Note that we are considering A ∈ Sn(w) for some w ∈
C(v), i.e.π(A) equalsw or a descendant ofw, thereforeWv,A = �ev→A

= �ew
in this proof.

Let us denote by (I I a) the contribution to (I I ) byw ∈ C(v) and A ∈ Sn(w)

with d(A,U←v) ≤ E2a−n . For such w, A by Lemmas 2.7–2.10 we have

a−n � diam�w
2.10� diam�ew

2.10� min{diam�ew, diam�ev }
2.7� d(�ew, �ev )

2.8� d(U←v,Uw→) ≤ d(U←v, A) � a−n,

so all suchw have diam�w � a−n and also d(A, �ev ) � a−n by Lemma 2.9.
By doubling and the separation property of Lemma 2.7 there are � 1 such w.
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Moreover, ρn
v (A) = 1 and ρn

u (A) = 1 for all u ∈ Tw, since U←v ⊂ U←u so
d(A,U←u) ≤ E2a−n . So the total contribution to (I I ) by w, A as above with
d(A,U←v) ≤ E2a−n is

(I I a) � a−np. (7.22)

So in the remainder of this proof we only need to consider w ∈ C(v) and
A ∈ Sn(w) with d(A,U←v) > E2a−n .
In case (I ) above we partitioned A ∈ S0

n (v) according to the distance values
dv(hvBA, hv�ev ); this time we partition the set of children of v according to
both their distance dv(hv�ew, hv�ev ) and their size diam hv�ew in the model
space Xv . We defined L(v, q) ⊂ C(v) to be, depending on q, those children
with large descendants, and will consider their contribution in (I I c) below.
For 1 ≤ j ≤ mv and 1 ≤ k we partition the remaining children as follows:

C(v, q, j, k) =
{
w ∈ C(v)\L(v, q) : dv(hv�ew, hv�ev ) ∈ (a− j , a− j+1],
and diam hv�ew ∈ (a−k, a−k+1]

}
,

and we define C(v, q, j, k) similarly when j = mv + 1, replacing
(a−(mv+1), a−mv ] by (0, a−mv ] in the appropriate place.

There exists k� so that if j ≥ k + k� then C(v, q, j, k) = ∅ because
Lemma 2.7 gives a lower bound on the relative distance between �ew and
�ev , and so there is a uniform lower bound on the relative distance of hv�ew
and hv�ev , since hv is η-quasisymmetric for uniform η [1, Lemma 3.2].

Also, as already remarked, C(v) is finite so only finitely many C(v, q, j, k)
are non-empty.

Having this notation, we bound the terms of (I I ) not in (I I a) as follows:

E p
1 a

−np
∑

w∈C(v)

∑

A ∈ Sn(w)

d(U←v, A) > E2a−n

ρn
v (A)p

∏
u∈T0(w)

ρn
u (A)p

= E p
1 a

−np
∑

w∈C(v)

∑

A ∈ Sn(w)

d(U←v, A) > E2a−n

(
diam hv(�ew )

diam�ew

E3Dv

fv(�ew )

)p ∏
u∈T0(w)

ρn
u (A)p

� Dp
v

( ∞∑
k=1

(mv+1)∧(k+k�)∑
j=1

∑
w∈C(v,q, j,k)

a−kpVn(w)

Dp
w fv(�ew )p

︸ ︷︷ ︸
(I I b)

+
∑

w∈L(v,q)

( diam hv(�ew ))pVn(w)

Dp
w fv(�ew )p

︸ ︷︷ ︸
(I I c)

)
(7.23)
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We now use that v /∈ Tδ′ . Dropping for the moment the constant Dp
v , we

decompose (I I b) as

(I I b) ≤
∞∑
k=1

mv∧(k+k�)∑
j=1

∑
w∈C(v,q, j,k)

a−kpVn(w)

Dp
wm

p
v a− j p

+
∞∑

k=1∨(mv−k�+1)

∑
w∈C(v,q,mv+1,k)

a−kpVn(w)

Dp
w · 1 , (7.24)

where we use that for w ∈ C(v, q, j, k), fv(�ew) = 1 if j = mv + 1 and
fv(�ew) ≥ mva j if j ≤ mv .
In (7.24), each w considered is not in L(v, q), so tw,n < tv,n − q = t − q,

so by the definition of V̂<(t−q), (7.24) is at most

( ∞∑
k=1

mv∧(k+k�)∑
j=1

∑
w∈C(v,q, j,k)

a−kp

m p
v a− j p

+
∞∑

k=1∨(mv−k�+1)

∑
w∈C(v,q,mv+1,k)

a−kp
)
V̂<(t−q)

(7.25)

Now by a volume estimate, for each j, k,

∑
w∈C(v,q, j,k)

a−kp =
∑

w∈C(v,q, j,k)

a−kQva−k(p−Qv)

≤
∑

w∈C(v,q, j,k)

(diam hv(�ew))Qva−k(p−Qv)

� a− j Qva−k(p−Qv). (7.26)

So (7.25) is at most V̂<(t−q) times

∞∑
k=1

mv∧(k+k�)∑
j=1

a− j Qva−k(p−Qv)

mp
v a− j p

+
∞∑

k=1∨(mv−k�+1)

a−(mv+1)Qva−k(p−Qv)

� 1

mp
v

mv−k�∑
k=1

ak(p−Qv)a−k(p−Qv) + 1

mp
v

∞∑
k=mv−k�+1

amv(p−Qv)a−k(p−Qv)

+
∞∑

k=mv−k�+1

a−mvQva−k(p−Qv)

= 1

mp
v

mv−k�∑
k=1

1+ 1

mp
v

∞∑
k=mv−k�+1

a−(k−mv)(p−Qv) +
∞∑

k=mv−k�+1

a−mvQv−k(p−Qv)
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� 1

mp−1
v

+ 1

mp
v

+ a−mvQv−mv(p−Qv) � 1

mp−1
v

. (7.27)

where the implied constants depend on k�, p − Qv and our other data.
It remains to bound (I I c) from (7.23). We now show

(I I c) =
∑

w∈L(v,q)

(diam hv(�ew))p

fv(�ew)p
· Vn(w)

Dp
w

�
∑

w∈L(v,q)

1

mp
v

· Vn(w)

Dp
w

.

(7.28)

This is true because if w ∈ L(v, q) we have tw ≥ tv − q − t� ≥ tv − 2t�,
thus diam�ew � diam�ev , and so by (4.3) diam hv(�ew) � 1. Moreover
d(�ew, �ev ) � diam�ew by Lemma 2.7. By uniform relative distance distor-
tion of quasisymmetric maps, we then get that dv(hv�ew, hv�ev ) is bounded
away from 0 for a uniform constant. In the case dv(hv�ew, hv�ev ) < a−mv

then mv is bounded from above, so by (7.11) mv � 1, thus fv(�ew) =
1 � mv . On the other hand if dv(hv�ew, hv�ev ) ≥ a−mv then fv(�ew) =
mvdv(hv�ew, hv�ev ) � mv . In either case (7.28) holds.

So in total, (7.22), (7.23), (7.24), (7.25), (7.27) and (7.28) give

(I I ) � (I I a) + Dp
v

(
(I I b) + (I I c)

)

� a−np + Dp
v V̂<(t−q) · 1

mp−1
v

+ Dp
v

∑
w∈L(v,q)

1

mp
v

· Vn(w)

Dp
w

.

��

7.2 Volume bound for v ∈ Tδ′

For the boundedlymany vertices in Tδ′ , our bound of Proposition 7.12 need not
hold, however the following weaker bound does hold by a similar argument.

Note that for all large enough n, for any v ∈ Tδ′ we have tv,n ≥ t ′0 where t ′0
is the constant of (7.10), since tv,n ≈ n. So we assume from now on that for
all v ∈ Tδ′ we have τ t ≥ mv > 1 and so (7.11) holds as well: mv ≈ τ t and
mv � τ t .

Proposition 7.29 There exists C depending on t� and the data of our con-
struction so that for any v ∈ Tδ′ and any q ≤ t�, we have

Vn(v)

Dp
v

≤ CV̂<(t−q) + C
∑

w∈L(v,q)

Vn(w)

Dp
w
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Proof We follow the proofs of Proposition 7.12 and Lemmas 7.14 and 7.15 in
Sect. 7.1, but consider the case v ∈ Tδ′ .

Recall that by (7.13) we can write Vn(v) as two sums, (I )where A ∈ S0n(v),
or (I I ) where π(A) is in Sn(w) for some child w ∈ C(v). These are bounded
as follows; we defer the proofs until later.

Lemma 7.30 There exists C so that for any v ∈ Tδ′ we have

(I ) �C a−np + Dp
v a

−mv(p−Qv).

Lemma 7.31 There exists C depending on t� so that for any v ∈ Tδ′ and
q ≤ t� we have

(I I ) �C a−np + Dp
v V̂<(t−q) + Dp

v

∑
w∈L(v,q)

Vn(w)

Dp
w

.

We now combine (7.13), Lemmas 7.30 and 7.31 to find:

Vn(v)

Dp
v

� a−np

Dp
v

+ a−mv(p−Qv) + V̂<(t−q) +
∑

w∈L(v,q)

Vn(w)

Dp
w

� a−tp + a−τ t (p−Qv) + V̂<(t−q) +
∑

w∈L(v,q)

Vn(w)

Dp
w

� V̂<(t−q) +
∑

w∈L(v,q)

Vn(w)

Dp
w

,

where we use that mv ≈ τ t and V̂<(t−q) ≥ 1. The proposition is proven. ��
7.2.1 Bound (I)

Proof of Lemma 7.30 We follow the notation and proof of Lemma 7.14. The
argument begins identically with (7.16) and (7.17).

Instead of decomposingR(v) ⊂ S0
n (v) to find the bound (7.18), we instead

use the simpler fact that {hvBA : A ∈ S0
n (v)} is a bounded multiplicity

collection of quasi-balls in the Ahlfors Qv-regular space Xv . Therefore, as
fv(BA) = 1, we have:

∑
A∈R(v)

(
diam hv(BA)

diam BA · fv(BA)

)p

� anp
∑

A∈R(v)

(diam hvBA)Qv+(p−Qv)

≤ anpa−mv(p−Qv)
∑

A∈R(v)

(diam hvBA)Qv
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� anpa−mv(p−Qv).

so instead of (7.21) we have

(I ) � a−np + a−npDp
v

(
anpa−mv(p−Qv)

)
= a−np + Dp

v a
−mv(p−Qv).

��
7.2.2 Bound (II)

Proof of Lemma 7.31 We follow the argument and notation used in the proof
of Lemma 7.15.

As before, (I I a) satisfies the bound of (7.22).Wewrite the remaining terms
as Dp

v

(
(I I b) + (I I c)

)
as in (7.23). Since fv(�ew) = 1, the bound (7.24) for

(I I b) is replaced by the following (again we drop for the moment the constant
Dp

v ):

(I I b) =
∞∑
k=1

(mv+1)∧(k+k�)∑
j=1

∑
w∈C(v,q, j,k)

a−kpVn(w)

Dp
w · 1 . (7.32)

In (7.32), each w considered is not in L(v, q), so tw,n < tv,n − q = t − q,
so by the definition of V̂<(t−q), (7.32) is at most

( ∞∑
k=1

(mv+1)∧(k+k�)∑
j=1

∑
w∈C(v,q, j,k)

a−kp
)
V̂<(t−q) (7.33)

Now the volume estimate (7.26) gives for each j, k,

∑
w∈C(v,q, j,k)

a−kp � a− j Qva−k(p−Qv),

so (7.33) is at most

∞∑
k=1

(mv+1)∧(k+k�)∑
j=1

a− j Qva−k(p−Qv)V̂<(t−q) ≤
∞∑
k=1

∞∑
j=1

a− j Qva−k(p−Qv)V̂<(t−q)

� V̂<(t−q).

So in total, (7.22), (7.23), (7.32), (7.33), and the above give

(I I ) � (I I a) + Dp
v

(
(I I b) + (I I c)

)
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848 M. Carrasco, J. M. Mackay

� a−np + Dp
v V̂<(t−q) + Dp

v · (I I c),
where, as diam hv(�ew) ≤ 1 and fv(�ew) = 1,

(I I c) =
∑

w∈L(v,q)

(diam hv(�ew))p

fv(�ew)p
· Vn(w)

Dp
w

≤
∑

w∈L(v,q)

Vn(w)

Dp
w

.

��

7.3 Uniform volume bounds

We can now complete the proof that Vn(v0) is bounded independently of n.

Proof of Theorem 7.4 Our goal is to bound Vn(v0) � Vn(v0)/D
p
v0 indepen-

dently of n.
First we apply Proposition 7.29 with v = v0, t = tv0,n ≤ n, q = 0 (addi-

tionally, t ≈ n) to bound Vn(v0) by

Vn(v0) � V̂<tv0,n +
∑

w∈L(v0,0)

Vn(w)

Dp
w

≤ V̂<n +
∑

w∈L(v0,0)

Vn(w)

Dp
w

.

For each w on the right-hand side which is in Tδ′ , we apply Proposition 7.29
to it (with v = w, t = tw,n ≤ n, q = 0) to get a bound

Vn(w)

Dp
w

� V̂<n +
∑

u∈L(w,0)

Vn(u)

Dp
u

.

There are boundedly many vertices in Tδ′ , so after doing this step to each such
term, we have that

Vn(v0) � V̂<n +
∑
u

Vn(u)

Dp
u

,

where each u in the sum is not in Tδ′ , but does have that�u has size comparable
to δ′. Therefore there is a uniform bound on how many such u appear, and by
definition Vn(u)/Dp

u ≤ V̂<(n+1) since tu,n ≤ n.
In conclusion, we have found that

Vn(v0) ≤ CV̂<(n+1)

for some C independent of n, and this is bounded as by Lemma 7.6 and
Proposition 7.8 supt∈Z V̂n < ∞. ��
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8 Attainment of conformal dimension

In this section we characterise when the conformal dimension of a hyperbolic
graph of groups with elementary edge groups is attained. The key concept we
use is porosity.

Definition 8.1 A subset Y of a metric space X is porous if there exists c > 0
so that for any y ∈ Y and r ≤ diam(X) there exists x ∈ X with B(x, cr) ⊂
B(y, r)\Y .
Under mild hypotheses, porosity is preserved by quasisymmetric homeomor-
phisms.

Lemma 8.2 (cf. [41, Theorem 4.2]) If X is a uniformly perfect metric space,
and Y ⊂ X is porous, and f : X → X ′ is a quasisymmetric homeomorphism,
then f (Y ) ⊂ X ′ is porous.

Proof Given B ′ = B(y′, r ′) ⊂ X ′ with y′ ∈ f (Y ) and r ′ ≤ diam X ′, since
f −1 is quasisymmetric there exists r > 0 so that B = B( f −1(y′), r) satisfies
B ⊂ f −1(B ′) ⊂ λB, where λ ≥ 1 is a constant depending only on f . Since Y
is porous, there exists B(x, cr) ⊂ B\Y . Now f (B(x, cr)) ⊂ f (B) ⊂ B ′, and
by quasisymmetry there exists r ′′ > 0 with B( f (x), r ′′) ⊂ f (B(x, cr)) ⊂
B( f (x), λr ′′). Since B(x, cr) ⊂ B\Y , B( f (x), r ′′) ⊂ B ′\ f (Y ), so it remains
to show that r ′′/r ′ ≥ c′ > 0 for a constant c′.

In a uniformly perfect space, the radius of any ball is comparable to its diam-
eter (indeed, this is an equivalent definition) up to some uniform constantC . So
by [22, Proposition 10.8], since B ⊂ f −1(B ′) and diam B � diam f −1(B ′)
we have diam f (B) � diam B ′ � r ′. Thus again by [22, Proposition 10.8],
writing η : [0,∞) → [0,∞) for the distortion function of f ,

r ′′

r ′
� diam f (B(x, cr))

diam f (B)
≥ 1

2η
(

diam B
diam B(x,cr)

) ≥ 1

η(C2/c)
> 0.

��
We will use the following criteria for non-attainment of Ahlfors regular con-
formal dimension, likely well known to experts in the area.

Proposition 8.3 Suppose there is a metric space X with a subset Y ⊂ X that
is porous, so that the (Ahlfors regular) conformal dimensions of Y and X are
equal (and finite). Then the conformal dimension of X is not attained.

Proof Suppose otherwise, and that f : X → X ′ is a quasisymmetric map
with X ′ Ahlfors regular of dimension Confdim X . Since X ′ is Ahlfors reg-
ular it is uniformly perfect, and so is X = f −1(X ′). Then f (Y ) ⊂ X ′ is
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850 M. Carrasco, J. M. Mackay

porous by Lemma 8.2 above, so its Assouad dimension satisfies dimA f (Y ) <

dimA X ′ = Confdim X [17, Lemma 5.8]. For any Q > dimA f (Y ), f (Y )

is quasisymmetric to an Ahlfors Q-regular space [22, Theorem 14.16], so
choosing Q ∈ (dimA f (Y ),Confdim X) we get that Confdim Y ≤ Q <

Confdim X , a contradiction. ��
A useful tool for identifying porous subsets is the following.

Proposition 8.4 Suppose H is a quasiconvex subgroup of a hyperbolic group
G. Then the following are equivalent:

(1) the limit set �H is porous in ∂∞G,
(2) �H ⊂ ∂∞G is a proper subset, and
(3) H is infinite index in G.

Proof The implication (1) $⇒ (2) is trivial. Likewise, (2) $⇒ (3) is straight-
forward: if [G : H ] < ∞ then there is a bounded fundamental domain for the
action of H on a Cayley graph X for G, and so for some constant C , every
point of X is within a distance C of H ⊂ X , and thus �H = ∂∞X = ∂∞G.

It remains to show (3) $⇒ (1). We fix a Cayley graph X for G. Since H
acts freely on G, the quotient H\X is a regular graph of bounded degree,
with a vertex for each right coset Hg. As [G : H ] = ∞, H\X has infinite
diameter, and so we can find a sequence of points gi ∈ G ⊂ X , i ∈ N, so that
d(H, gi ) → ∞ as i → ∞. Suppose for each i that hi ∈ H ⊂ X is a closest
point in H to gi . Let γi : [0, d(hi , gi )] → X be a geodesic from hi to gi . By
the choice of hi for each t ∈ [0, d(hi , gi )], d(γi (t), H) ≥ t . Let βi = h−1

i γi ,
so that βi (0) = 1, and still for each t in the domain of each βi , d(H, βi (t)) ≥ t .
We apply Arzelà–Ascoli to the sequence of maps (βi ) to find a subsequence
that converges uniformly on compact intervals to a map β : [0,∞) → X . This
map β will be a geodesic ray, and will inherit the property that d(β(t), H) ≥ t
for all t ∈ [0,∞).

Now to show porosity: fix a visual metric ρ on ∂∞X = ∂∞G, with visual
parameter ε > 0 and constant C1, so that ρ(x, y) �C1 e−ε(x |y)1 . Suppose H
is C2-quasiconvex: any geodesic with endpoints on H lies in NC2H ; this will
also be true for a geodesic ray from 1 ∈ H to a point of �H . Finally, write δX
for the hyperbolicity constant of X .

We want to find c > 0 so that given y ∈ �H and r ≤ diam(∂∞X), there
exists x ∈ ∂∞X with (i) for any y′ ∈ �H , ρ(x, y′) ≥ cr , and (ii) for any
x ′ ∈ ∂∞X with ρ(x, x ′) ≤ cr , ρ(x ′, y) ≤ r .

We will set c = e−ε(A1+A2), where A1 and A2 are parameters depending
only ε,C1,C2, δX found below. Given y ∈ �H and r ≤ diam ∂∞X , fix a
geodesic ray α from 1 representing y. Consider the point of α at distance
−1
ε
log r + A1 from 1, and let h ∈ H be a point within C2 from that point. Let

x ∈ ∂∞X be the limit point of hβ.
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Fig. 6 The configuration of
the points x , x ′ and y, with a
potential location for y′

1
h

y

x x′

H y′

We show that (i) holds. For y′ ∈ �H , if ρ(x, y′) < e−ε(A1+A2)r then
(x |y′)1 ≥ −1

ε
log r+ A1+ A2−C3 for someC3 = C3(ε,C1), so the geodesics

from 1 to x and to y′ stay 2δX -close for all times up to this value. But this
is a contradiction for large A2 since the geodesic from 1 to y′ lies in NC2H ,
while at times t ≥ −1

ε
log r+ A1, the geodesic from 1 to x has distance at least

t − (−ε−1 log(r)+ A1)−C4 from H for C4 = C4(δX , ε,C1,C2). See Fig. 6.
We show that (ii) holds. If ρ(x, x ′) ≤ cr = e−ε(A1+A2) then (x |x ′)1 ≥

−1
ε
log r+ A1+ A2−C3. If A2 is large enough, the tree approximation to 1, y,

x and x ′ must look like Fig. 6. In particular, (x ′|y)1 equals −1
ε
log r + A1 up to

an additive error C5. Thus ρ(x ′, y) ≤ C1e−ε(x ′|y) ≤ C1e−εA1eεC5r . Provided
A1 is chosen large enough depending on C1, ε, C5, we have ρ(x ′, y) ≤ r as
desired. ��

As an aside, this implies that hyperbolic groupswhich attain their conformal
dimension satisfy a kind of “co-Hopfian” property; compare the variations
discussed in Kapovich–Lukyanenko [27] and Stark–Woodhouse [38]. (The
second author thanks Woodhouse for asking him this question.)

Corollary 8.5 If G is a hyperbolic group, and ∂∞G attains its (Ahlfors regu-
lar) conformal dimension, then no finite index subgroup of G is isomorphic to
a quasiconvex infinite index subgroup of G.

Proof Suppose H1, H2 ≤ G are isomorphic (indeed, it suffices that they are
quasi-isometric) with [G : H1] < ∞ and [G : H2] = ∞. By Proposition 8.4,
�H2 is porous in ∂∞G. But �H2 and ∂∞G are quasisymmetric, and hence
each attains their conformal dimension, which contradicts Proposition 8.3. ��
We return to our main goal, of characterising the attainment of conformal
dimension for a hyperbolic graph of groups with finite or 2-ended edge groups.

Proof of Theorem 1.7 Suppose G is a hyperbolic group so that Confdim ∂∞G
is attained, and with a graph of groups decomposition over finite or 2-ended
subgroups.
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If Confdim ∂∞G = 0 then G is virtually free by Stallings–Dunwoody, and
as the conformal dimension is attained G is 2-ended, see e.g. [34, Theorem
3.4.6]. If Confdim ∂∞G = 1 is attained, then G is virtually a cocompact
Fuchsian group by, e.g., a result of Bonk–Kleiner [2, Theorem 1.1].

We are left with the case that Confdim ∂∞G > 1 is attained, and so by
Theorem 1.1 is equal to Confdim ∂∞Gi for some vertex group Gi . Let T be
theBass–Serre tree for the given graph of groups decompositionG. Each vertex
of T is stabilized by a conjugate of a vertex group. If T has infinite diameter,
then there are infinitely many such vertices stabilized by conjugates of Gi ,
each corresponding to a left coset ofGi , so [G : Gi ] = ∞, but this contradicts
Proposition 8.3. So T has finite diameter.

If there were any loops in G then T would have infinite diameter, so G must
be a tree. Consider a leaf of G where the vertex group is Gv and the adjacent
edge group Ge. Let x, y ∈ T be vertices stabilized by Gi and Gv respectively,
and γ ⊂ T the simple path connecting them.

If the injection ie : Ge → Gv has proper image, then the index [Gv :
i(Ge)] ≥ 2, so y has degree≥ 2, and there is an element g1 of Gv ≤ G which
fixes y but moves the rest of γ . Since Confdim ∂∞Gi > 1, the edge groups
adjacent to Gi have infinite index in Gi , so again there is an element g2 of
Gi ⊂ G which fixes x but moves the rest of γ . Alternating g1 and g2, one
shows that T contains an unbounded line and hence has infinite diameter, a
contradiction.

So the injection ie : Ge → Gv is an isomorphism, and we can remove v

and e from G without changing G. We continue to do this process, removing
leafs, until only Gi is left, and thus G = Gi . ��
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