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1. Introduction

This paper addresses various possible extensions of the classical theory of
Sobolev spaces to the setting of metric spaces equipped with a Borel measure and
contains new results and new proofs. It was my intention to make this paper ac-
cessible to graduate students and researchers looking for an introduction to this
material. I tried to make the paper as self-contained as possible by writing detailed
proofs. However, to keep the paper at a manageable length, certain important re-
sults were deleted. In addition, the reader will discover that what is missing the
most are the examples, due to the fact that their generally complicated nature re-
quires some specific knowledge of geometric analysis. The examples can be found
in such areas of geometric analysis as quasi-conformal mappings, non-linear sub-
elliptic equations, differential geometry, and analysis on graphs and provide the
main motivation for future development of the subject.
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All the bibliographical comments are moved to the last Section 12. Again, in
the interest of length I decided to make only very short historical comments and
provide a short list of references. Further references and comments can easily be
found in the papers cited here.

The reader should be familiar with basic results from measure theory, maximal
functions and classical theory of Sobolev spaces. Without familiarity with the
subject, the reader will not have appropriate motivation for what is discussed here
and will not see the similarities between the metric theory and the classical theory.

This paper is a modified version of my lectures delivered during the trimester
Heat Kernels, Random Walks & Analysis on Manifolds & Graphs at the Centre
Emile Borel, June 2002, Paris. I would like to express my deepest gratitude to
the organizers, Pascal Auscher, Gérard Besson, Thierry Coulhon and Alexander
Grigor’yan, for giving me opportunity to participate in this excellent event. The
paper was completed during my stay in the Department of Mathematics at the
University of Michigan. I wish to thank both the Centre Emilie Borel and the
University of Michigan for their support and hospitality.

2. Classical Sobolev spaces

The theory of Sobolev spaces is a central analytic tool in the study of various
aspects of partial differential equations and calculus of variations. However, the
scope of its applications is much wider, including questions in differential geometry,
algebraic topology, complex analysis, and in probability theory, just to name a few.

The classical Sobolev spaces are defined on open sets in the Euclidean spaces
or Riemannian manifolds. If Ω ⊂ Rn is open and 1 ≤ p < ∞ then the Sobolev
space W 1,p(Ω) is defined as the collection of all functions u ∈ Lp(Ω) with the
distributional gradient in Lp.1 W 1,p(Ω) is a Banach space with respect to the norm
‖u‖W 1,p = ‖u‖Lp + ‖∇u‖Lp . Since locally Lipschitz (or even smooth) functions are
dense in W 1,p(Ω), one can equivalently define the Sobolev space as the closure of
the subspace of locally Lipschitz functions in the Sobolev norm.

The definition of the Sobolev space strongly involves the Euclidean structure of
the underlying domain Ω suggesting that there is no reasonable way to extend this
definition to the case in which Ω is replaced by a metric space equipped with a Borel
measure.2 The purpose of this paper is to show that this expectation is not correct.
We will provide several different approaches to Sobolev spaces on metric-measure
spaces and we will show that, in a surprisingly general setting, all the definitions
are equivalent.

The theory of Sobolev spaces on metric-measure spaces turns out to have
many applications to Carnot–Carathéodory spaces, sub-elliptic equations, quasi-
conformal mappings on Carnot groups and more general Loewner spaces, analysis
on topological manifolds, potential theory on infinite graphs, analysis on fractals,
theory of Dirichlet forms, variational problems in the setting of metric spaces, hy-
perbolic buildings, Gromov hyperbolic spaces, rigidity results and other problems
of metric differential geometry. Unfortunately there is no space here to discuss
those applications. We will concentrate on the abstract approach only. For more
comments and references, see Section 12.

1We do not consider the case p = ∞ just for simplicity’s sake. In this case Sobolev functions

are Lipschitz continuous and the theory has a slightly different (more classical) character.
2Called metric-measure space for short.
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In order to define Sobolev spaces on metric-measure spaces we need to find
another approach to Sobolev spaces, the one that will not be so strongly Euclidean
and, in particular, will not involve derivatives. One such approach is suggested by
the following

Theorem 2.1. For u ∈ Lp(Rn), 1 ≤ p < ∞, the following conditions are
equivalent

(1) u ∈W 1,p(Rn),
(2) There exists 0 ≤ g ∈ Lp(Rn) such that

(2.1)
∫

B

|u− uB | dx ≤ r

∫
B

g dx

on every ball B of any radius r.
(3) There exists 0 ≤ g ∈ Lp(Rn), and σ ≥ 1 such that

(2.2)
∫

B

|u− uB | dx ≤ r

(∫
σB

gp dx

)1/p

on every ball B of any radius r.
(4) There exists 0 ≤ g ∈ Lp(Rn), and σ ≥ 1 such that

(2.3) |u(x)− u(y)| ≤ |x− y|
((
Mσ|x−y|g

p(x)
)1/p +

(
Mσ|x−y|g

p(y)
)1/p

)
a.e.

Moreover each of the inequalities at 2.-4. implies that

|∇u| ≤ Cg a.e.

Let us explain the notation. Here and in what follows the integral average is
denoted by uB =

∫
B
u dµ = µ(B)−1

∫
B
u dµ, where µ is the measure with respect

to which we integrate. In Theorem 2.1 we integrate with respect to the Lebesgue
measure. By σB we denote a ball concentric with B and with radius σ times that
of B. The symbols

(2.4) MRh(x) = sup
r<R

∫
B(x,r)

|h| dµ , Mh(x) = sup
r>0

∫
B(x,r)

|h| dµ

denote the Hardy–Littlewood maximal functions. C is used to denote a general
constant—its value can change even in a single string of estimates.

There are also natural versions of the theorem in which Rn is replaced by a
bounded domain Ω with sufficiently regular boundary, but this will not be discussed
here.

If u ∈W 1,p(Rn), then (2.1) follows from the classical Poincaré inequality∫
B

|u− uB | dx ≤ Cr

∫
B

|∇u| dx

which holds true on every ball B of radius r. Inequality (2.2) is then a consequence
of (2.1) and the Hölder inequality. To prove (2.3) for u ∈W 1,p(Rn) we just need a
well known pointwise inequality

(2.5) |u(x)− u(y)| ≤ C|x− y|
(
M2|x−y||∇u|(x) +M2|x−y||∇u|(y)

)
a.e.

and the Hölder inequality.
We do not prove the remaining implications now. We will come back to this

later and prove the theorem in a great generality of metric-measure spaces, see
Theorems 9.4, 9.5 and 10.2.
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Note that the conditions at 2.-4. do not involve derivatives, just the metric
and measure properties of the underlying Euclidean space Rn. Hence each of the
conditions can be used to define a version of the Sobolev space in the setting of
a general metric-measure spaces. In particular if (X, d, µ) is a metric space (X, d)
equipped with a Borel measure µ, and we define the space P 1,p(X, d, µ) as the
collection of all u ∈ L1

loc,
3 such that there is a nonnegative g ∈ Lp and σ ≥ 1 so

that ∫
B

|u− uB | dµ ≤ r

(∫
σB

gp dµ

)1/p

on every ball B ⊂ X of radius r, then Lp ∩ P 1,p is a natural generalization of
W 1,p. The other characterizations in Theorem 2.1 could also be used to define
Sobolev type spaces on metric-measure spaces; we will study this approach later in
Sections 9 and 10.

Inequality (2.5) implies that for u ∈W 1,p(Rn) we have

|u(x)− u(y)| ≤ C|x− y|(M|∇u|(x) +M|∇u|(y)) a.e.

This and the boundedness of the maximal function in Lp, p > 1,4 give one direction
of the proof of the following result. The other implication follows from (2.1) upon
integrating (2.6) with respect to x, y ∈ B, (cf. (9.2)).

Theorem 2.2. Let Ω = Rn or Ω ⊂ Rn be a bounded domain with smooth
boundary and 1 < p < ∞. Then u ∈ W 1,p(Ω), where 1 < p < ∞, if and only if
u ∈ Lp(Ω) and there is 0 ≤ g ∈ Lp(Ω) so that

(2.6) |u(x)− u(y)| ≤ |x− y|(g(x) + g(y)) a.e.

Moreover5 ‖∇u‖Lp ≈ infg ‖g‖Lp , where the infimum is taken over the class of all
functions g satisfying (2.6).

This result leads to yet another approach to Sobolev spaces on metric-measure
spaces, see Section 8. Observe that Theorem 2.1 allows for p = 1, while Theorem 2.2
requires p > 1.

Let us close this section by discussing one more characterization of the Sobolev
space in terms of absolute continuity on lines.

Absolutely continuous functions are integrals of L1 function. More precisely, u
is absolutely continuous on an interval [a, b] if u(x) = c+

∫ x

a
h(t) dt for some c ∈ R,

h ∈ L1([a, b]) and all x ∈ [a, b].6 We say that u is locally absolutely continuous on
an open set U ⊂ R if it is absolutely continuous on each [a, b] ⊂ U .

Let Ω ⊂ Rn be an open set. We say that u ∈ ACL(Ω) (absolutely continuous on
lines) if u is Borel measurable and locally absolutely continuous on almost all lines
parallel to coordinate axes.7 Since absolutely continuous functions are differentiable
a.e., u ∈ ACL(Ω) has partial derivatives a.e. and hence the vector of partial
derivatives ∇u is defined a.e. Now we say that u ∈ ACLp(Ω) if u ∈ Lp(Ω)∩ACL(Ω)
and |∇u| ∈ Lp(Ω). The following result characterizes Sobolev spaces in terms of
absolute continuity.

3By writing u ∈ Lp
loc we designate that u ∈ Lp(B) on every ball B.

4‖Mg‖Lp ≤ C‖g‖Lp for 1 < p < ∞, see also Theorem 4.8.
5We write A ≈ B if C−1A ≤ B ≤ CA for some constant C ≥ 1.
6Then it follows that u is differentiable a.e. and u′ = h a.e.
7More precisely, for almost every line ` parallel to one of the coordinate axes, the restriction

of u to ` ∩ Ω is locally absolutely continuous on ` ∩ Ω.
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Theorem 2.3. If Ω ⊂ Rn is open and 1 ≤ p <∞, then W 1,p(Ω) = ACLp(Ω).

The theorem asserts that each ACLp(Ω) function belongs to W 1,p(Ω) and that
the classical partial derivatives (which exist a.e. for elements of ACLp(Ω)) are equal
to weak partial derivatives. On the other hand every element u ∈ W 1,p(Ω) can be
alternated on a set of measure zero in a way that the resulting function belongs to
ACLp(Ω).

The proof of the inclusion ACLp(Ω) ⊂W 1,p(Ω) is easy. It follows from the fact
that integration by parts holds for absolutely continuous functions, the definition
of the weak derivative and from the Fubini theorem. The opposite inclusion is
more involved and will not be proved now. We will return to this result later, see
Theorem 7.13.

In contrast with Theorems 2.1 and 2.2, there is no obvious way to use the
characterization from Theorem 2.3 in order to define Sobolev type spaces on metric-
measure spaces. This is because both, the notion of almost all lines parallel to
coordinate axes and the notion of the gradient do not make sense for general metric-
measure spaces. It is possible, however, to overcome these problems by introducing
the modulus of the path family and the notion of upper gradient. The modulus of
path family is an outer measure on the class of all nonconstant rectifiable curves
and hence it allows us to talk about almost all curves and the notion of upper
gradient is a natural replacement for the length of the gradient. This approach will
be presented in Section 7.

The paper is organized as follows. In Section 3 we will discuss rectifiable curves
in metric spaces. A short introduction to Borel and doubling measures is provided
in Section 4. The modulus of the path family and the notion of upper gradient
will be introduced in Sections 5 and 6 respectively. With these tools in hands we
will introduce a Sobolev type space N1,p on a metric-measure space in Section 7.
This approach is related to Theorem 2.3. The approaches related to Theorems 2.1
and 2.2 will be discussed in Sections 9 and 8 respectively. These two approaches are
particularly effective if the measure satisfies the doubling condition. Yet another
approach to Sobolev spaces based on the existence of an abstract linear operator
of differentiation will be presented in Section 10. Finally Section 11 is devoted
to theory of spaces supporting Poincaré inequalities. This is a special class of
metric-measure spaces. It turns out that although, the definition of this class of
metric-measure spaces is expressed in metric-measure terms, it has a surprisingly
rich structure as it allows for the existence of a kind of a differentiable structure.
Most of the results discussed in the paper are proved here. The last Section 12 is
devoted to bibliographical comments and further reading.

The paper is at the same time a survey and research paper—many results are
stated and proved here for the first time and some other results are furnished with
new proofs. For description what is new, see Section 12.

3. Curves in metric spaces

Let (X, d) be a metric space. By a curve in X we will mean any continuous
mapping γ : [a, b] → X. The image of the curve will be denoted by |γ| = γ([a, b]).
The length of γ is defined as

`(γ) = sup

{
n−1∑
i=0

d(γ(ti), γ(ti+1))

}
,
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where the supremum is taken over all partitions a = t0 < t1 < . . . < tn = b. We
say that the curve is rectifiable if `(γ) <∞.

Observe that a curve γ : [a, b] → Rn is rectifiable if and only if the coordinate
functions are continuous and of bounded variation.

The length function associated with a rectifiable curve γ : [a, b] → X is sγ :
[a, b] → [0, `(γ)], given by sγ(t) = `(γ|[a,t]).

Lemma 3.1. Assume given a rectifiable curve γ : [a, b] → X. Then the length
function sγ : [a, b] → [0, `(γ)] is nondecreasing and continuous.

Proof. Clearly, sγ is nondecreasing. Continuity is less obvious. We will prove
continuity of γ in the interior of [a, b]. The case of end points is similar and left to
the reader. By contradiction suppose that there is τ ∈ (a, b) with

(3.1) η = lim
t→τ+

sγ(t)− lim
t→τ−

sγ(t) > 0.

Take a partition a = t0 < t1 < . . . < tn = b, such that

(3.2)
n−1∑
i=0

d(γ(ti), γ(ti+1)) > `(γ)− η/3

and d(γ(ti), γ(ti+1)) < η/3 for i = 0, 1, 2, . . . , n − 1. We can always choose a
partition such that τ is not among ti’s i.e. τ ∈ (ti, ti+1) for some i (why?). Hence
it follows from (3.1) that `(γ|[ti,ti+1]) ≥ η. Taking a subdivision of [ti, ti+1], we can
replace the summand d(γ(ti), γ(ti+1)) < η/3 in (3.2) by a sum larger than 2η/3.
This implies, however, that the new sum in (3.2) is larger than (`(γ)−η/3)−η/3+
2η/3 = `(γ), an obvious contradiction. �

If γ : [a, b] → X is a curve and α : [c, d] → [a, b] is continuous, nondecreasing
and onto, then we say that the curve γ ◦ α is obtained from γ by a nondecreasing
change of variables. Note that

(3.3) `(γ) = `(γ ◦ α).

We could also define the length of an arbitrary, not necessarily continuous, mapping
γ : [a, b] → X, in the same way as the length of a continuous curve. Of course, for
rectifiability of such γ it is necessary that there are at most countably many points
of discontinuity. Note that (3.3) holds true for an arbitrary mapping γ : [a, b] → X
as well. We will need this observation just once, in the proof of Theorem 3.2, and
it will be pointed out explicitly. In all other cases throughout the paper we will
consider continuous curves only.

Every rectifiable curve admits a very nice parametrization by the arc-length.
This follows from the next result.

Theorem 3.2. If γ : [a, b] → X is a rectifiable curve, then there is a unique
curve γ̃ : [0, `(γ)] → X such that

(3.4) γ = γ̃ ◦ sγ .

Moreover `(γ̃|[0,t]) = t for every t ∈ [0, `(γ)]. In particular γ̃ : [0, `(γ)] → X is a
1-Lipschitz8 mapping.

8A mapping f : (X, d) → (Y, ρ) between metric spaces is called L-Lipschitz if ρ(f(x), f(y)) ≤
Ld(x, y) for all x, y ∈ X. We call L Lipschitz constant of f .
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Remark 3.3. We call γ̃ parametrized by the arc-length because `(γ̃|[0,t]) = t
for t ∈ [0, `(γ)].

Proof of Theorem 3.2. We can assume that a = 0. Let

h(t) = inf{s−1
γ (t)} for t ∈ [0, `(γ)].

Since the sets s−1
γ (t) are compact, the infimum is attained i.e., h(t) ∈ s−1

γ (t). Hence

sγ(h(t)) = t, h(sγ(t)) ≤ t.

The last inequality follows from the observation that t ∈ s−1
γ (sγ(t)) and hence

infimum of the set s−1
γ (sγ(t)) which, by definition, equals h(sγ(t)) is less than or

equal to t. Note that h need not be continuous. Actually intervals of constancy of
sγ correspond to jumps of h.

If the curve γ̃ : [0, `(γ)] → X satisfies (3.4), then γ(h(t)) = γ̃(sγ(h(t)) = γ̃(t)
for all t ∈ [0, `(γ)], and hence

(3.5) γ̃(t) = γ(h(t)) for t ∈ [0, `(γ)].

This proves the uniqueness of γ̃. Now it remains to show that if γ̃ is defined by
formula (3.5), then (3.4) and `(γ̃|[0,t]) = t for all t ∈ [0, `(γ)] hold true. Note that
the last condition will imply that γ̃ is 1-Lipschitz and hence continuous.

Since h(sγ(t)) ≤ t, we have

d(γ(t), γ(h(sγ(t)))) ≤ `(γ|[h(sγ(t)),t]) = sγ(t)− sγ(h(sγ(t))) = sγ(t)− sγ(t) = 0.

Hence (γ̃ ◦ sγ)(t) = γ(h(sγ(t))) = γ(t) which is (3.4). The proof of the arc-length
parametrization of γ̃ is also easy

`(γ̃|[0,t]) = `(γ̃|[0,sγ(h(t))]) = `(γ̃ ◦ sγ |[0,h(t)]) = `(γ|[0,h(t)]) = sγ(h(t)) = t.

In the last equality we employed the fact that formula (3.3) holds also for discon-
tinuous curves, since at this moment we did not know whether γ̃ was continuous or
not. However, now we can readily show that γ̃ is 1-Lipschitz

d(γ̃(t1), γ̃(t2)) ≤ `(γ̃|[t1,t2]) = t2 − t1.

The proof is complete. �

In particular, Theorem 3.2 shows that every rectifiable curve admits a 1-
Lipschitz parametrization.

Exercise 3.4. Let γ : [0, 1] → [0, 1] be a standard Cantor staircase function.
What is its arc-length parametrization γ̃?

Definition 3.5. For a curve γ : [a, b] → X we define speed at a point t ∈ (a, b)
as the limit

|γ̇|(t) := lim
h→0

d(γ(t+ h), γ(t))
|h|

,

provided the limit exists.

Theorem 3.6. For every Lipschitz curve γ : [a, b] → X speed exists a.e. and

(3.6) `(γ) =
∫ b

a

|γ̇|(t) dt.
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Proof. Let {xn}∞n=1 be a dense subset of |γ| = γ([a, b]). Let ϕn(t) =
d(γ(t), xn). Functions ϕn : [a, b] → R are Lipschitz continuous and hence dif-
ferentiable a.e. Let m(t) = supn |ϕ̇n(t)|. We will prove that

(3.7) |γ̇|(t) = m(t) a.e.

Since each of the functions x 7→ d(x, xn) is 1-Lipschitz we conclude that

lim inf
h→0

d(γ(t+ h), γ(t))
|h|

≥ lim inf
h→0

|ϕn(t+ h)− ϕn(t)|
|h|

= |ϕ̇n(t)| a.e.

Taking the supremum over n yields

(3.8) lim inf
h→0

d(γ(t+ h), γ(t))
|h|

≥ m(t) a.e.

In particular m is bounded by a Lipschitz constant of γ and hence integrable on
[a, b]. On the other hand for s ≤ t we have
(3.9)

d(γ(t), γ(s)) = sup
n
|d(γ(t), xn)− d(γ(s), xn)| ≤ sup

n

∫ t

s

|ϕ̇n(τ)| dτ ≤
∫ t

s

m(τ) dτ.

Now at a Lebesgue point t ∈ (a, b) of m we have

lim sup
h→0

d(γ(t+ h), γ(t))
|h|

≤ lim sup
h→0

1
h

∫ t+h

t

m(τ) dτ = m(t).

This together with (3.8) proves (3.7). We are left with the proof of (3.6). According
to (3.9) and (3.7), for an arbitrary partition a = t0 < t1 < . . . < tn = b we have

n−1∑
i=0

d(γ(ti+1), γ(ti)) ≤
n−1∑
i=0

∫ ti+1

ti

m(τ) dτ =
∫ b

a

|γ̇|(τ) dτ.

Taking the supremum over partitions yields `(γ) ≤
∫ b

a
|γ̇|(τ) dτ . To prove opposite

inequality, fix ε > 0 and split [a, b] into n segments of equal length i.e. ti = a+ ihn,
hn = (b− a)/n, i = 0, 1, 2, . . . , n. Take n so that hn < ε. We have

1
hn

∫ b−ε

a

d(γ(t+ hn), γ(t)) dt ≤ 1
hn

∫ hn

0

n−2∑
i=0

d(γ(t+ ti+1), γ(t+ ti)) dt

≤ 1
hn

∫ hn

0

`(γ) = `(γ).

Now the definition of speed and Fatou’s theorem imply∫ b−ε

a

|γ̇|(t) dt =
∫ b−ε

a

lim
n→∞

d(γ(t+ hn), γ(t))
hn

dt

≤ lim inf
n→∞

1
hn

∫ b−ε

a

d(γ(t+ hn), γ(t)) dt ≤ `(γ).

Passing to the limit as ε→ 0 yields the desired inequality. �

Corollary 3.7. | ˙̃γ|(t) = 1 for a.e. t ∈ [0, `(γ)].

Proof. `(γ) = `(γ̃) =
∫ `(γ)

0
| ˙̃γ|(t) dt. This and | ˙̃γ|(t) ≤ 1 (γ̃ is 1-Lipschitz)

implies | ˙̃γ|(t) = 1 a.e. �
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Corollary 3.8. If γ : [a, b] → X is a Lipschitz curve then sγ is Lipschitz and
ṡγ(t) = |γ̇|(t) for a.e. t ∈ (a, b).

Proof. For a ≤ t1 ≤ t2 ≤ b we have

|sγ(t1)− sγ(t2)| = `(γ|[t1,t2]) =
∫ t2

t1

|γ̇|(τ) dτ ≤ L|t1 − t2|,

where L is a Lipschitz constant of γ, so the function sγ is Lipschitz. Hence∫ b

a

|γ̇|(τ) dτ = `(γ) = sγ(b)− sγ(a) =
∫ b

a

ṡγ(τ) dτ.

This and the obvious inequality ṡγ ≥ |γ̇| yields the result. �

We will use the existence of arc-length parametrizations of rectifiable curves to
establish the existence of geodesics in metric spaces.

Theorem 3.9. If the space X is proper9 and if there exists a rectifiable curve
that joins given two points x, y ∈ X, then there exists a shortest curve that joins x
and y in X.

Proof. Let L be the infimum of the lengths of all curves γ : [a, b] → X, such
that γ(a) = x, γ(b) = y. Clearly, L < ∞. Of course, we can assume that L > 0.
We want to prove that there is a curve of length L. Let γn : [a, b] → X, γn(a) = x,
γn(b) = y be a minimizing sequence i.e. `(γn) → L as n → ∞. We can assume
that `(γn) = Ln < L + 1 for every n. The family of curves ηn : [0, L] → X,
ηn(t) = γ̃n(tLn/L) is equicontinuous since all the curves are (L+ 1)/L-Lipschitz.10

The images of the curves are contained in a compact set in X (as they are contained
in a sufficiently large ball) and hence according to the Arzela–Ascoli theorem, we
can extract a uniformly convergent subsequence ηnk

→ η : [0, L] → X. It easily
follows from the definition of the length of curve that `(η) ≤ lim infk→∞ `(ηnk

) = L
(why?). Since η is a curve that joints x and y it cannot be shorter than L, hence
`(η) = L. �

A shortest curve joining two points need not be unique—think of poles on the
sphere.

Lemma 3.10. A shortest curve γ : [a, b] → X that joints given two points is
one-to-one.

Proof. Otherwise there would be “loops”. Cutting loops would make the
curve shorter. �

Now we are ready to define the integral of a Borel function along a rectifiable
curve.

Definition 3.11. Let γ : [a, b] → X be a rectifiable curve and % : |γ| → [0,∞]
be a Borel measurable function, where |γ| = γ([a, b]). Then we define∫

γ

% :=
∫ `(γ)

0

%(γ̃(t)) dt,

9A metric space is proper if bounded and closed sets are compact. It is a stronger condition

than being locally compact as Rn \ {0} is locally compact but not proper. Actually the claim of

the theorem does not hold in Rn \ {0}.
10Here γ̃n denotes the arc-length parametrization of γn.
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where γ̃ : [0, `(γ)] → X is the arc-length parametrization of γ.

Theorem 3.12. Let γ : [a, b] → X be a Lipschitz curve and let % : |γ| → [0,∞]
be Borel measurable. Then ∫

γ

% =
∫ b

a

%(γ(t))|γ̇|(t) dt.

Proof. Since γ = γ̃ ◦ sγ and sγ is Lipschitz with ṡγ(t) = |γ̇|(t) a.e., we
conclude, upon applying the classical change of variables formula, that∫

γ

% =
∫ `(γ)

0

%(γ̃(t)) dt =
∫ b

a

%(γ̃(sγ(t)))ṡγ(t) dt =
∫ b

a

%(γ(t))|γ̇|(t) dt.

The proof is complete. �

Exercise 3.13. There is an obvious way to define length of an “open” curve
γ : (a, b) → X. Show that if `(γ) < ∞, and the space is complete, then there is a
unique extension of γ to a curve γ : [a, b] → X of the same length.

4. Borel and doubling measures

In the remaining part of the paper we will be concerned mainly with the metric-
measure spaces. In this section we briefly review basic facts about Borel measures
including the discussion on doubling measures. As we shall see, assuming that the
metric space is equipped with a doubling measure leads to a very rich theory of
Sobolev spaces.

Throughout the paper by a Borel measure we mean an outer, Borel-regular
measure i.e., such an outer measure µ on a metric space (X, d) that all Borel sets
are µ-measurable and for every set A there exists a Borel set B such that A ⊂ B
and µ(A) = µ(B). With every measure µ (outer or countably additive) for which all
Borel sets are measurable we can associate a Borel-regular measure by the formula

µ̃(A) = inf{µ(E) : A ⊂ E and E is Borel} for every set A ⊂ X.

Working with outer measures is convenient because sometimes we might want mea-
sure a set without being too concerned about its measurability. We will need the
following important

Theorem 4.1. Suppose that µ is a Borel measure on (X, d) and that X can
be represented as a countable union of open sets of finite measure. Then for all
measurable sets A ⊂ X we have11

µ(A) = inf
U⊃A

U−open

µ(U) = sup
C⊂A

C−closed

µ(C) .

Note that if the space X is locally compact, separable and µ(K) <∞ for every
compact set K, then X can be written as a union of a countable family of open
sets with finite measure so the above theorem applies.

As a corollary we obtain the following well known result.

Theorem 4.2. If µ is a Borel measure on a metric space (X, d), then for every
1 ≤ p <∞, continuous functions are dense in Lp(X).

11Actually, the first equality with the infimum over open sets holds for all (not necessarily

measurable) sets A ⊂ X.
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Proof. Simple functions are dense and characteristic functions can be approx-
imated via Theorem 4.1 and Urysohn’s lemma. �

In what follows we will always assume that a Borel measure µ has the property
that 0 < µ(B) < ∞ for every ball B ⊂ X.12 By a metric-measure space we will
always mean a metric space equipped with such a measure.

We say that the measure µ is doubling if there is a constant Cd ≥ 1 (called
doubling constant) such that 0 < µ(2B) ≤ Cdµ(B) <∞ for every ball B ⊂ X.

Metric spaces equipped with a doubling measure are called spaces of homoge-
neous type and s = log2 Cd = logCd/ log 2 is called homogeneous dimension. Note
that the homogeneous dimension is not uniquely associated with a given doubling
measure as we can always take Cd larger.

Not every metric space can support a doubling measure. Indeed, we have

Lemma 4.3. If µ is doubling, then the metric space is doubling in the sense
that there is a constant C so that every ball B of radius r can be covered by at most
C balls of radius r/2.

Proof. Take a subset {xi}i∈I ⊂ B maximal with respect to the property that
d(xi, xj) ≥ r/2 for all i, j ∈ I, i 6= j. Then B ⊂

⋃
i∈I B(xi, r/2) (by maximality)

and the balls B(xi, r/4) are pairwise disjoint. Now it suffices to observe that the
last condition together with the doubling condition imply that the cardinality of I
is bounded by a finite number depending on Cd only. �

The doubling condition is quite restrictive as we have

Lemma 4.4. A doubling and complete metric space is proper.

Proof. Mimic standard proof of the Bolzano–Weierstrass theorem using
Lemma 4.3. �

A deep result is the converse to Lemma 4.3.

Theorem 4.5. There is a doubling measure on a complete metric space X if
and only if X is doubling.13

In particular every closed subset of the Euclidean space carries a doubling
measure. One can also construct doubling measures in the Euclidean space which
are singular with respect to the Lebesgue measure.

An important class of doubling measures is formed by so called n-regular mea-
sures14, which are measures for which there are constants C ≥ 1 and s > 0 such
that C−1rs ≤ µ(B(x, r)) ≤ Crs for all x ∈ X and 0 < r < diamX. The s-regular
measures are closely related to the Hausdorff measure Hs since we have

Theorem 4.6. If µ is a an s-regular measure, then there is a constant C ≥ 1
so that C−1µ(E) ≤ Hs(E) ≤ Cµ(E) for every E ⊂ X. In particular Hs is s-regular
too.

12Clearly, this implies the assumptions of Theorem 4.1.
13The theorem is not true without the assumption that the spaces is complete: the set of

rational numbers is doubling but there is no doubling measure on it (why?).
14Called also Ahlfors–David regular measures.
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The proof is based on standard covering arguments and a version of Lemma 4.3
in which we estimate the number of balls of radius r > 0 needed to cover a ball of
radius R > 0.

Although general doubling measure need not be regular, we always have a
one-sided estimate.

Lemma 4.7. If the measure µ is doubling with the doubling constant Cd, and
s = log2 Cd, then

(4.1)
µ(B(x, r))
µ(B0)

≥ 4−s

(
r

r0

)s

whenever B0 is a ball of radius r0, x ∈ B0 and r ≤ r0.

Proof. Take a positive integer k such that 2r0 ≤ 2kr < 4r0. Then B0 ⊂
B(x, 2kr) and hence µ(B0) ≤ µ(B(x, 2kr)) ≤ Ck

dµ(B(x, r)). The rest is easy. �

The exponent s = log2 Cd cannot be lowered in general. Indeed, in the case in
which µ is the Lebesgue measure in Rn we have Cd = 2n and hence s = n. Doubling
measures have many properties similar to those of the Lebesgue measure in Rn. For
example the Hardy–Littlewood maximal function is bounded in Lp for p > 1 and
it satisfies weak type estimates for p = 1. Moreover the Lebesgue differentiation
theorem holds true.

Theorem 4.8. If µ is doubling, then
(1) µ({x : Mg(x) > t}) ≤ Ct−1

∫
X
|g|dµ for every t > 0.

(2) ‖Mg‖Lp ≤ C‖g‖Lp , for 1 < p <∞.

Theorem 4.9. Assume that µ is doubling and u ∈ L1
loc. Fix C > 0. Then for

µ-a.e. x the following is true. If B(xi, ri) is a sequence of balls such that xi → x,
ri → 0, and ri > Cd(x, xi), then

lim
i→∞

∫
B(xi,ri)

u dµ = u(x).

There is an obvious way to define Lebesgue points and it easily follows from
Theorem 4.9 that µ-a.e. point is Lebesgue.

5. Modulus of the path family

In this section we assume that (X, d, µ) is a metric-measure space.15

Let M denote the family of all nonconstant rectifiable curves in X. It may well
be that M = ∅, but we will be mainly interested in metric spaces for which the
space M is sufficiently large.

In the Euclidean space the notion of almost every straight line is self-
explanatory. We want to generalize this to the setting of metric spaces. To this
end we need define an outer measure on M. This measure will allow us talk about
properties that hold for almost all curves γ ∈ M.

Definition 5.1. For Γ ⊂ M, let F (Γ) be the family of all Borel measurable
functions % : X → [0,∞] such that∫

γ

% ≥ 1 for every γ ∈ Γ.

15For detailed assumptions about the space, see Section 4.
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Now for each 1 ≤ p <∞ we define

Modp(Γ) = inf
%∈F (Γ)

∫
X

%p dµ.

The number Modp(Γ) is called p-modulus of the family Γ.

Theorem 5.2. Modp is an outer measure on M i.e.,
(1) Modp(∅) = 0,
(2) Γ1 ⊂ Γ2 ⇒ Modp(Γ1) ≤ Modp(Γ2),
(3) Modp(

⋃∞
i=1 Γi) ≤

∑∞
i=1 Modp(Γi).

Proof. (1) Modp(∅) = 0 because % ≡ 0 ∈ F (∅). (2) If Γ1 ⊂ Γ2, then F (Γ2) ⊂
F (Γ1) and hence Modp(Γ1) ≤ Modp(Γ2). (3) We can assume that Modp(Γi) < ∞
for all i. Take %i ∈ F (Γi) such that,

∫
X
%p

i dµ < Modp(Γi) + ε2−i. Then % :=
(
∑∞

i=1 %
p
i )1/p ∈ F (

⋃∞
i=1 Γi) and the claim easily follows. �

The larger family of curves, the larger modulus, but also the shorter curves,
the larger modulus. More precisely, we have.

Lemma 5.3. Let Γ1,Γ2 ⊂ M. If each curve γ ∈ Γ1 contains a subcurve16 that
belongs to Γ2, then Modp(Γ1) ≤ Modp(Γ2)

Proof. F (Γ2) ⊂ F (Γ1). �

If some property holds for all curves γ ∈ M \ Γ, where Modp(Γ) = 0, then we
say that the property holds for p-a.e. curve.

In the Euclidean space the notion of p-a.e. curve is consistent with the notion
of almost every line parallel to a given coordinate direction in the following sense.

Theorem 5.4. Points in Qn = [0, 1]n = [0, 1] × Qn−1 will be denoted by x =
(x1, x

′). Let 1 ≤ p < ∞. For a Borel subset E ⊂ Qn−1 = [0, 1]n−1 consider the
family of curves (straight segments) passing through E and parallel to x1 i.e.,

ΓE = {γx′ : [0, 1] → Qn : γx′(t) = (t, x′), x′ ∈ E}.
Then Modp(ΓE) = 0 if and only if Ln−1(E) = 0.17

Proof. ⇒. For every ε > 0 there is % ∈ F (ΓE) such that

ε >

(∫
Rn

%p

)1/p

≥
∫

E

∫ 1

0

%(t, x′) dt dx′ ≥ Ln−1(E),

and hence Ln−1(E) = 0. ⇐. Obviously % = χ
[0,1]×E ∈ F (ΓE). Since Ln−1(E) = 0

we conclude that ‖%‖Lp = 0 and hence Modp(ΓE) = 0. �

The following theorem provides a convenient characterization of path families
of p-modulus zero.

Theorem 5.5. Let Γ ⊂ M. Then Modp(Γ) = 0 if and only if there exists a
Borel measurable function 0 ≤ % ∈ Lp(X) such that,∫

γ

% = +∞ for every γ ∈ Γ.

16A subcurve of γ : [a, b] → X is a curve of the form γ′ : [c, d] → X, where [c, d] ⊂ [a, b] and

γ′ = γ|[c,d].
17Lk denotes the k-dimensional Lebesgue measure.
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Proof. ⇐. %/n ∈ F (Γ) for every n and hence Modp(Γ) ≤ limn→∞ ‖%/n‖p
Lp =

0.
⇒. There exists %n ∈ F (Γ) such that ‖%n‖Lp < 2−n and

∫
γ
%n ≥ 1 for every γ ∈ Γ.

Then % =
∑∞

n=1 %n has all desired properties. �

Corollary 5.6. If 0 ≤ g ∈ Lp, 1 ≤ p <∞, is Borel measurable, then
∫

γ
g <∞

for p-a.e. γ ∈ M.

The following theorem will be very important in what follows.

Theorem 5.7. Let uk : X → R = R ∪ {−∞,+∞} be a sequence of Borel
functions which converge to a Borel function u : X → R in Lp(X). Then there is
a subsequence (ukj )j such that∫

γ

|ukj
− u| → 0 as j →∞,

for p-a.e. curve γ ∈ M.

Proof. Take a subsequence (ukj )j such that

(5.1)
∫

X

|ukj
− u|p dµ < 2−pj−j .

Set gj = |ukj
− u|, and let Γ ⊂ M be the family of curves such that

∫
γ
gj does not

converge to 0 as j →∞. We will show that Modp(Γ) = 0. Denote by Γj the family
of curves in M for which

∫
γ
gj > 2−j . Then 2jgj ∈ F (Γj) and hence Modp(Γj) <

2−j as a consequence of (5.1). This and the observation that Γ ⊂
⋃∞

j=i Γj for every
i implies that Modp(Γ) ≤ 2−i+1 for every i and hence Modp(Γ) = 0. �

6. Upper gradient

Definition 6.1. Let u : X → R be a Borel function. We say that a Borel
function g : X → [0,∞] is an upper gradient of u if

(6.1) |u(γ(a))− u(γ(b))| ≤
∫

γ

g

for every rectifiable curve γ : [a, b] → X. We say that g is a p-weak upper gradient
of u if (6.1) holds on p-a.e. curve γ ∈ M.

If g is an upper gradient of u and g̃ = g, µ-a.e., is another nonnegative Borel
function, then it may be that g̃ is no longer upper gradient of u. This is an
unpleasant situation. Fortunately p-weak upper gradients are more flexible from
this point of view.

Lemma 6.2. If g is a p-weak upper gradient of u and g̃ is another nonnegative
Borel function such that g̃ = g µ-a.e., then g̃ is a p-weak upper gradient of u too.

Proof. The constant sequence gn = |g− g̃| converges to 0 in Lp, so according
to Theorem 5.7,

∫
γ
|g − g̃| = 0 for p-a.e. γ ∈ M. This, however, easily implies the

claim. �

The next result says that p-weak upper gradients can be nicely approximated
by upper gradients.
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Lemma 6.3. If g is a p-weak upper gradient of u which is finite a.e., then for
every ε > 0 there is an upper gradient gε of u such that

gε ≥ g everywhere, and ‖gε − g‖Lp < ε.

Proof. Let Γ ⊂ M be the family of all nonconstant rectifiable curves γ :
[a, b] → X for which the inequality

|u(γ(a))− u(γ(b))| ≤
∫

γ

g

is not satisfied. Then Modp(Γ) = 0, and hence, according to Theorem 5.5, there
exists 0 ≤ % ∈ Lp such that

∫
γ
% = +∞ for every γ ∈ Γ. Now it suffices to take

gε = g + ε%/‖%‖Lp . �

The result below shows that the upper gradient is a natural generalization of
|∇u|.

Proposition 6.4. If u ∈ C∞(Ω), Ω ⊂ Rn, then |∇u| is an upper gradient of
u. This upper gradient is the least one in the sense that if g ∈ L1

loc(Ω) is another
upper gradient of u, then g ≥ |∇u| a.e.18

Remark 6.5. The above result is not true without the assumption that g ∈
L1

loc. To see this, let u(x) = x on [0, 1] and let E ⊂ [0, 1] be a Cantor type set of
positive Lebesgue measure. Then the function g = ∞·χ[0,1]\E is an upper gradient
of u, however, it is not true that g ≥ |u′| = 1 a.e. One can easily modify the
example to have g <∞ everywhere.

Proof of Proposition 6.4. Connecting x and y by a curve γ : [a, b] → Ω
parametrized by the arc-length and employing the fact that |γ̇| = 1 a.e. we have

|u(x)− u(y)| =

∣∣∣∣∣
∫ b

a

d

dt
u(γ(t)) dt

∣∣∣∣∣ ≤
∫ b

a

|∇u(γ(t))| dt =
∫

γ

|∇u|.

The proof for the second part of the proposition is slightly more difficult. Let ν ∈
Sn−1 be a direction in Rn. Consider all the curves γ defined on finite closed intervals
with γ̇ = ν i.e., the curves are oriented segments parallel to ν parametrized by the
arc-length. Since g restricted to almost all such segments is integrable, it easily
follows from the Lebesgue differentiation theorem that g(x) ≥ Dνu(x) = ∇u(x) · ν
for a.e. x. Hence this inequality holds for almost all x and all ν from a countable
dense subset of Sn−1. Taking supremum over ν yields g(x) ≥ |∇u(x)| a.e. �

It is natural to ask if there is a canonical construction of an upper gradient
of a given function in the general metric space. It turns out that for an arbitrary
Lipschitz function u on a metric space the function

|∇+u|(x) := lim sup
y→x
x6=y

|u(y)− u(x)|
d(y, x)

is an upper gradient.19 One can even prove a better result that we now describe.

18Compare to Corollary 7.15.
19We put |∇+u|(x) = 0 if x is an isolated point.
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Definition 6.6. For a function u : X → R we define the upper and the lower
Lipschitz constant at a point x ∈ X by

Lipu(x) = lim sup
r→0

L(x, u, r)
r

, lipu(x) = lim inf
r→0

L(x, u, r)
r

,

where
L(x, u, r) = sup{|u(y)− u(x)| : d(x, y) ≤ r} for r > 0.

Clearly lipu(x) ≤ Lipu(x) = |∇+u|(x). It is not difficult to show that for u
Lipschitz, both functions lipu and Lipu are Borel measurable.

Lemma 6.7. If u is Lipschitz continuous, then lipu is an upper gradient of u.

Remark 6.8. If u is merely continuous, then lipu need not be upper gradient.
Indeed, the standard Cantor staircase function u satisfies u′ = 0 a.e. and hence
lipu = 0 is not an upper gradient of u.

Proof of Lemma 6.7. Let γ : [a, b] → X be a rectifiable curve parametrized
by arc-length that connects x and y. The function u ◦ γ is Lipschitz continuous
and hence differentiable a.e. It is easily seen that |(u ◦ γ)′(t)| ≤ lipu(γ(t)) at every
point t of differentiability of u ◦ γ. Now the inequality

|u(x)− u(y)| =

∣∣∣∣∣
∫ b

a

d

dt
u(γ(t)) dt

∣∣∣∣∣ ≤
∫ b

a

lipu(γ(t)) dt

completes the proof. �

7. Sobolev spaces N1,p

This section is devoted to the development of the theory of Sobolev spaces on
metric-measure spaces based on the notion of the upper gradient. We assume that
(X, d, µ) is a metric-measure space.

Let Ñ1,p(X, d, µ), 1 ≤ p < ∞ be the class of all Lp integrable Borel functions
on X for which there exists a p-weak upper gradient in Lp. For u ∈ Ñ1,p(X, d, µ)
we define

‖u‖Ñ1,p = ‖u‖Lp + inf
g
‖g‖Lp ,

where the infimum is taken over all p-weak upper gradients g of u.
Lemma 6.3 shows that in the definition of Ñ1,p and ‖ · ‖Ñ1,p , p-weak upper

gradients can be replaced by upper gradients.

Definition 7.1. We define an equivalence relation in Ñ1,p by u ∼ v ≡
‖u − v‖Ñ1,p = 0. Then the space N1,p(X, d, µ)20 is defined as the quotient
Ñ1,p(X, d, µ)/ ∼ and is equipped with the norm

‖u‖N1,p := ‖u‖Ñ1,p .

Note that if u ∈ Ñ1,p and v = u µ-a.e. then it is not necessarily true that
v ∈ Ñ1,p. Nevertheless, we will show later that if u, v ∈ Ñ1,p and u = v µ-a.e., then
‖u − v‖Ñ1,p = 0 and hence u and v define the same element in N1,p. We will also
show that N1,p is a Banach space and that in the case of a domain in the Euclidean
space N1,p(Ω) = W 1,p(Ω). We need first some definitions and auxiliary results.

20N1,p is known as Newtonian space.
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Definition 7.2. Let u : X → R be a given function. We say that
• u is absolutely continuous along a curve γ : [a, b] → X if u◦ γ̃ is absolutely

continuous on [0, `(γ)].
• u is absolutely continuous on p-a.e. curve (has ACCp property) if for
p-a.e. γ ∈ M, u ◦ γ̃ is absolutely continuous.

Lemma 7.3. If u is absolutely continuous along γ, then u ◦ γ is continuous.

Proof. u ◦ γ = u ◦ γ̃ ◦ sγ and sγ is continuous. �

Corollary 7.4. If u has the ACCp property, then u◦γ is continuous for p-a.e.
γ ∈ M.

Lemma 7.5. If u : Ω → R, where Ω ⊂ Rn is open, is a Borel measurable
function with the ACCp property, then u ∈ ACL(Ω).

Proof. It is a direct consequence of Theorem 5.4. �

Lemma 7.6. Every function u ∈ Ñ1,p(X, d, µ) has the ACCp property.

Proof. Let 0 ≤ g ∈ Lp be an upper gradient of u (the existence of g follows
from Lemma 6.3). Then for every γ ∈ M we have

|u(γ̃(β))− u(γ̃(α))| ≤
∫ β

α

g(γ̃(τ)) dτ, provided [α, β] ⊂ [0, `(γ)].

Moreover
∫

γ
g <∞ for p-a.e. γ ∈ M (Corollary 5.6). For such γ ∈ M we have

|u(γ̃(β))− u(γ̃(α))| ≤
∫ β

α

g(γ̃(τ)) dτ <∞ for every [α, β] ⊂ [0, `(γ)].

This, in turn, implies absolute continuity of u ◦ γ̃ as a consequence of the absolute
continuity of the integral. �

Corollary 7.7. If u1, u2 ∈ Ñ1,p(X, d, µ), u1 = u2 µ-a.e., then u1 ∼ u2, i.e.
the two functions define exactly the same element in N1,p(X, d, µ).

Proof. For u = u1 − u2 we have u ∈ Ñ1,p and ‖u‖Lp = 0. We want to prove
that ‖u‖Ñ1,p = 0. To this end it suffices to show that u ◦ γ ≡ 0 for p-a.e. γ ∈ M.21

Let E = {x : u(x) 6= 0}. Then µ(E) = 0 and hence g = +∞ · χE ∈ Lp, ‖g‖Lp = 0.
By Corollary 5.6 and Lemma 7.6 for p-a.e. γ ∈ M we have∫

γ

g <∞ and u ◦ γ̃ is absolutely continuous.

The first condition implies that g ◦ γ̃ = 0 a.e.,22 so L1(γ̃−1(E)) = 0 and hence
u ◦ γ̃ = 0 a.e. Now continuity of u ◦ γ̃ implies that u ◦ γ̃ = 0 everywhere and
therefore u ◦ γ = 0 everywhere. �

Lemma 7.8. Assume that (uj)∞j=1 and (gj)∞j=1 are sequences in Lp(X), 1 ≤ p <
∞, weakly convergent in Lp(X) to u ∈ Lp(X) and g ∈ Lp(X) respectively. If gj is
a p-weak upper gradient of uj for j = 1, 2, 3, . . ., then there is a representative23 of
u such that g is a p-weak upper gradient of u.

21Because this will imply that g ≡ 0 is a p-weak upper gradient of u.
22Because g ◦ γ̃ = +∞ at points where g ◦ γ̃ 6= 0.
23Representative in the class of functions that are equal µ-a.e.
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Remarks 7.9. (a) If we even assumed that gj were upper gradients of uj , then
the limiting function g would be, in general, only a p-weak upper gradient of u.
(b) The choice of a suitable representative of u is essential as changing u on a set
of measure zero can result in the fact that g will no longer be a p-weak upper
gradient of u. However, the choice of a suitable representative of g is not needed,
see Lemma 6.2.

Proof of Lemma 7.8. According to Lemma 6.3 we can assume that gj is an
upper gradient of uj . Then, observe that a convex combination

∑n
j=1 αjgj is an

upper gradient of
∑n

j=1 αjuj , so by Mazur’s lemma24 we can assume that uj → u

and gj → g, both in the norm of Lp (why?). Now taking a suitable subsequence we
can assume that ujk

→ u µ-a.e. and that (Theorem 5.7)∫
γ

|gjk
− g| → 0 as k →∞

for all γ ∈ M \ Γ1, where Modp(Γ1) = 0.
Let Γ2 be the family of all curves γ ∈ M such that either

∫
γ
g = +∞ or∫

γ
gj = +∞ for some j. Then Modp(Γ2) = 0 (Theorem 5.5).

Let E be the set of all points x for which the convergence ujk
(x) → u(x) <∞

does not hold. Clearly µ(E) = 0 and hence the family

Γ3 =
{
γ ∈ M : L1(γ̃−1(E)) > 0

}
satisfies Modp(Γ3) = 0. Indeed, ∞ · χE ∈ F (Γ3), ‖∞ · χE‖Lp = 0.

Now let γ ∈ M \ (Γ1 ∪ Γ2 ∪ Γ3). Then∫ `(γ)

0

|gjk
(γ̃(τ))− g(γ̃(τ))| dτ → 0 as k →∞.

Since γ 6∈ Γ3, we have that γ̃(τ) 6∈ E for a.e. τ ∈ [0, `(γ)] and hence ujk
◦ γ̃(τ)

converges to u ◦ γ̃(τ) < ∞ for a.e. τ . Next we show that the family ujk
◦ γ̃

is equicontinuous on [0, `(γ)]. Note that both facts will imply that the sequence
ujk

◦ γ̃ converges uniformly on [0, `(γ)]. Obviously we have

(7.1) |ujk
(γ̃(t))− ujk

(γ̃(s))| ≤
∫ t

s

gjk
(γ̃(τ)) dτ

for every 0 ≤ s < t ≤ `(γ). Now equicontinuity will be proved as soon as we show
that for every ε > 0 there is δ > 0 such that if A ⊂ [0, `(γ)] satisfies L1(A) < δ,
then25

sup
k

∫
A

gjk
(γ̃(τ)) dτ < ε.

To this end choose k0 so large that∫ `(γ)

0

|gjk
(γ̃(τ))− g(γ̃(τ))| dτ < ε/2 for each k ≥ k0.

24Mazur’s lemma says that if a sequence (xn) of elements of a Banach space X weakly
converges to x ∈ X, then there is a sequence of convex combinations of (xn) that converges to x

in the norm of X.
25The proof of this fact is nothing else, but the proof of the well known fact that a sequence

convergent in L1 forms an equiintegrable family of functions.
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Since ∫
A

gjk
(γ̃(τ)) dτ ≤

∫
A

g(γ̃(τ)) dτ +
∫ `(γ)

0

|gjk
(γ̃(τ))− g(γ̃(τ))| dτ,

it suffice to choose δ > 0 such that

L1(A) < δ ⇒

{∫
A
g(γ̃(τ)) dτ < ε/2,∫

A
gji

(γ̃(τ)) dτ < ε for i = 1, 2, . . . , k0 − 1.

This is possible according to the absolute continuity of the integral.26 Thus equicon-
tinuity of the family (ujk

◦ γ̃)k is proved. Since the sequence ujk
◦ γ̃ converges a.e.

and forms an equicontinuous family, we conclude that the sequence converges uni-
formly on [0, `(γ)].

Now we choose a representative of u as follows

u(x) :=

{
limk→∞ ujk

(x) if the limit exists
0 otherwise.

Note that the sequence (ujk
)k converges uniformly to u on the image |γ| of every

curve γ ∈ M \ (Γ1 ∪ Γ2 ∪ Γ3), hence passing to the limit in (7.1) with s = 0 and
t = `(γ) yields

|u(γ̃(0))− u(γ̃(`(γ)))| ≤
∫ `(γ)

0

g(γ̃(τ)) dτ,

which means |u(γ(a)) − u(γ(b))| ≤
∫

γ
g for all γ ∈ M \ (Γ1 ∪ Γ2 ∪ Γ3),γ : [a, b] →

X. �

Corollary 7.10. If uj ∈ N1,p(X, d, µ), 1 < p < ∞, is a bounded sequence
and uj ⇀ u weakly in Lp(X), then there is a representative of u such that u ∈
N1,p(X, d, µ) and

‖u‖N1,p ≤ lim inf
j→∞

‖uj‖N1,p

Remarks 7.11. (a) The claim is not true for p = 1.
(b) Reflexivity of N1,p would readily imply the corollary, however, in the general
case the reflexivity of N1,p is an open problem. We will come back to this and other
related questions later, see Theorem 10.2, Corollary 11.7 and Theorem 8.5.

Proof of Corollary 7.10. This is a direct consequence of the fact that
from a bounded sequence of upper gradients gj ∈ Lp(X) of uj a subsequence weakly
convergent in Lp(X) can be extracted,27 Lemma 7.8, and the weak lower semicon-
tinuity of the Lp norm,28 i.e. hj ⇀ h in Lp implies ‖h‖Lp ≤ lim infj→∞ ‖hj‖Lp . �

Theorem 7.12. N1,p(X, d, µ), 1 ≤ p <∞ is a Banach space.

Proof. Let (uj)∞j=1 be a Cauchy sequence for the norm ‖·‖N1,p . Then uj → u

in Lp for some u ∈ Lp. We want to show that u ∈ N1,p and that uj → u in N1,p.
To this end it suffices to show that u ∈ N1,p and that each subsequence of (uj)
contains a subsequence that converges to u in the norm of N1,p.

26Since γ 6∈ Γ2, each of the functions g ◦ γ̃ and gj ◦ γ̃ is integrable on [0, `(γ)].
27Because Lp, 1 < p < ∞ is reflexive.
28More generally, weak convergence xn ⇀ x in a Banach space implies ‖x‖ ≤

lim infn→∞ ‖xn‖. Indeed, for x∗ ∈ X∗ with ‖x∗‖ = 1 we have x∗(x) = limn→∞ x∗(xn) ≤
lim infn→∞ ‖xn‖ and taking supremum over x∗ yields the claim (Hahn–Banach).
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Take an arbitrary subsequence of (uj) and select from this another subsequence
(ujk

) such that
‖ujk

− ujk+1‖N1,p < 2−k.

Let g̃k be an upper gradient of ujk
− ujk+1 satisfying ‖g̃k‖Lp < 2−k. Then the

function gk =
∑∞

i=k g̃i is an upper gradient of ujk
− ujk+`

for any ` ≥ 1. Observe
that ‖gk‖Lp < 2 · 2−k → 0 as k → ∞. Since ujk

− ujk+`
→ ujk

− u in Lp and
gk → gk as `→∞ (gk is a constant sequence with respect to `), Lemma 7.8 implies
that gk is a p-weak upper gradient (of a suitable representative) of ujk

− u. Hence
ujk

− u ∈ N1,p, u ∈ N1,p and

‖ujk
− u‖N1,p ≤ ‖ujk

− u‖Lp + ‖gk‖Lp → 0

as k →∞. �

The next theorem shows that the space N1,p is a natural generalization of the
classical Sobolev space W 1,p to the setting of metric spaces.

Theorem 7.13. If Ω ⊂ Rn is open and 1 ≤ p <∞, then

N1,p(Ω, | · |,Ln) = ACLp(Ω) = W 1,p(Ω)

as sets and the norms are equal.29

Remarks 7.14. (a) N1,p(Ω, |·|,Ln) is the N1,p space on Ω regarded as a metric
space with the Euclidean metric and the Lebesgue measure.
(b) Functions in ACLp(Ω) have partial derivatives a.e. and the space is equipped
with the norm ‖u‖ACLp = ‖u‖Lp + ‖∇u‖Lp . A priori this is not obvious how to
relate this norm to that of the space W 1,p as the gradient ∇u of u ∈ ACLp is
understood in the pointwise sense, while the gradient in W 1,p is the distributional
one.

Proof of Theorem 7.13. Lemmas 7.6 and 7.5 imply that N1,p ⊂ ACL.
Since one can easily show that |∂u/∂xi| ≤ g for every locally integrable upper
gradient g of u ∈ N1,p and all i = 1, 2, . . . , n, we conclude that N1,p ⊂ ACLp.
Actually, since we can rotate the coordinate system, the same argument shows
that directional derivatives Dνu exist a.e. and |Dνu| ≤ g a.e. for all directions ν.
We cannot, however, follow the argument from the proof of Proposition 6.4 and
conclude that |∇u| ≤ g a.e. since we do not know whether Dνu = ∇u · ν.

The Fubini theorem, the definition of the weak derivative, and the fact that the
integration by parts holds for absolutely continuos functions imply ACLp ⊂ W 1,p

with ‖u‖ACLp = ‖u‖W 1,p . More precisely the pointwise partial derivatives of u ∈
ACLp are equal to the distributional ones. Since Dνu = ∇u · ν a.e. for u ∈W 1,p,30

we conclude that this equality holds also for u ∈ N1,p ⊂W 1,p as well. Now the same
argument as in the proof of Proposition 6.4 yields |∇u| ≤ g a.e. for any locally
integrable upper gradient g of u. Hence ‖u‖ACLp = ‖u‖W 1,p ≤ ‖u‖N1,p . Thus
we are left with the proof that W 1,p ⊂ N1,p along with the inequality ‖u‖N1,p ≤
‖u‖W 1,p .

29The equality between sets N1,p, ACLp and W 1,p has to be properly understood since the
equivalence relations identifying Borel functions in N1,p, ACLp and W 1,p are defined in a slightly

different way for each of the spaces, see also comments to Theorem 2.3.
30This is obvious for u ∈ C∞ and the case of u ∈ W 1,p follows from a standard approximation

argument.
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Let u ∈W 1,p(Ω). Choose uk ∈ C∞(Ω), such that uk → u in the norm of W 1,p.
Since |∇uk| is an upper gradient of uk, uk → u in Lp, and |∇uk| → |∇u| in Lp,
Lemma 7.8 implies that u has a representative for which |∇u| is a p-weak upper
gradient. This yields the embedding W 1,p ⊂ N1,p and ‖u‖N1,p ≤ ‖u‖W 1,p . �

As a consequence of the proof we also have the following result which generalizes
Proposition 6.4.

Corollary 7.15. Any function u ∈W 1,p(Ω), 1 ≤ p <∞ has a representative
for which |∇u| is a p-weak upper gradient. On the other hand if g ∈ L1

loc is a p-weak
upper gradient of u, then g ≥ |∇u| a.e.

Thus |∇u| is the least p-weak upper gradient of u ∈W 1,p(Ω).

Theorem 7.16. For every u ∈ N1,p(X, d, µ), 1 ≤ p <∞, there exists the least
p-weak upper gradient gu ∈ Lp of u. It is smallest in the sense that if g ∈ Lp is
another p-weak upper gradient of u, then g ≥ gu µ-a.e.31

Proof. We need the following important

Lemma 7.17. Assume that u ∈ N1,p(X, d, µ), 1 ≤ p < ∞, and g, h ∈ Lp are
p-weak upper gradients of u. If E ⊂ X is a closed set, then

% = gχE + hχX\E

is a p-weak upper gradient of u as well.

Proof. Let Γ1 be the family of curves γ ∈ M for which either
∫

γ
(g+h) = +∞

or u ◦ γ is not continuous. Clearly Modp(Γ1) = 0.32

Let Γ′2 be the family of curves γ ∈ M, γ : [a, b] → X for which the inequality

|u(γ(a))− u(γ(b))| ≤ min
(∫

γ

g,

∫
γ

h

)
is not satisfied. Define Γ2 be the family of all curves γ ∈ M which contain subcurves
belonging to Γ′2. Since F (Γ′2) ⊂ F (Γ2), we have Modp(Γ2) ≤ Modp(Γ′2) = 0.33 Now
it remains to show that

|u(γ(a))− u(γ(b))| ≤
∫

γ

%

for all γ ∈ M \ (Γ1 ∪ Γ2), γ : [a, b] → X.
If |γ| ⊂ E or |γ| ⊂ X \E, then the inequality is obvious. Thus assume that the

image |γ| has a nonempty intersection both with E and with X \ E.
The set γ−1(X \ E) is open and hence it consists of a countable (or finite)

number of open and disjoint intervals. Denote the intervals by ((ti, si))∞i=1. Let
γi = γ|[ti,si]. We have

|u(γ(a))− u(γ(b))| ≤ |u(γ(a))− u(γ(t1))|+ |u(γ(t1))− u(γ(s1))|

+ |u(γ(s1))− u(γ(b))| ≤
∫

γ\γ1

g +
∫

γ1

h,

31I do not know if the claim is true for g ∈ L1
loc, but I believe it is not.

32Theorem 5.5, Lemma 7.6 and Corollary 7.4.
33Cf. Lemma 5.3.
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where γ \ γ1 denotes the two curves obtained from γ by ‘erasing’ the interior part
γ1, i.e. the curves γ|[a,t1] and γ|[s1,b]. Similarly we can erase a larger number of
subcurves of γ. This yields

|u(γ(a))− u(γ(b))| ≤
∫

γ\
⋃n

i=1 γi

g +
∫

⋃n
i=1 γi

h ,

and the claim follows upon passing to the limit as n→∞ (why?). �

Now we can complete the proof of the theorem. Let m = infg ‖g‖Lp , where
the infimum is taken over the set of all p-weak upper gradients of u. It suffices to
show that there is a p-weak upper gradient gu of u such that ‖gu‖Lp = m. Indeed,
if we suppose that g ∈ Lp is another p-weak upper gradient of u such that the set
{g < gu} has positive measure, then there is a closed set E ⊂ {g < gu} of positive
measure34 µ(E) > 0 and hence the function % = gχE + guχX\E is a p-weak upper
gradient of u with ‖%‖Lp < m, which is a contradiction.

Thus it remains to prove the existence of a p-weak upper gradient gu with
‖gu‖Lp = m.35 Let (gi)∞i=1 be a sequence of p-weak upper gradients of u such that
‖gi‖Lp < m + 2−i. We will show that it is possible to modify the sequence (gi) in
such a way that we will obtain a new sequence of p-weak upper gradients (%i)∞i=1

of u satisfying

‖%i‖Lp < m+ 2 · 2−i, %1 ≥ %2 ≥ %3 ≥ . . . µ-a.e.

The sequence (%i)∞i=1 will be defined by induction. We set %1 = g1. Suppose the
p-weak upper gradients %1, %2, . . . , %i have already been chosen. We will now define
%i+1.

The measure ν defined by ν(A) =
∫

A
%p

i dµ is finite and hence there is a closed
set E ⊂ {gi+1 < %i} such that

ν({gi+1 < %i} \ E) < 2−(i+1)p.

Now we set %i+1 = gi+1χE + %iχX\E . Then %i+1 ≤ %i is a p-weak upper gradient
and ∫

X

%p
i+1 dµ =

∫
E

gp
i+1 dµ+

∫
{gi+1<%i}\E

%p
i dµ+

∫
{gi+1≥%i}

%p
i dµ

≤
∫

E

gp
i+1 dµ+

∫
{gi+1≥%i}

gp
i+1 dµ+ 2−(i+1)p

≤ (m+ 2−(i+1))p + 2−(i+1)p.

Hence m ≤ ‖%i+1‖Lp ≤ m + 2 · 2−(i+1). The sequence of p-weak upper gradients
(%i)i converges pointwise to a function %. The dominated convergence theorem
yields %i → % in Lp. Obviously ‖%‖Lp = m, and according to Lemma 7.8, % is a
p-weak upper gradient of u. The proof of the theorem is complete. �

There are other possible ways to define Sobolev spaces via upper gradients. One
such definition is presented below. It turns out, however, that the space defined
below is isometrically isomorphic to N1,p.

34Theorem 4.1.
35The case 1 < p < ∞ easily follows from the reflexivity of Lp, Lemma 7.8 and lower

semicontinuity of the Lp norm. However, since we want to cover the case p = 1 as well, we need
a different argument.
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Definition 7.18. C1,p(X, d, µ) is a collection of all u ∈ Lp with the finite norm

(7.2) ‖u‖C1,p = ‖u‖Lp + inf
(gi)

lim inf
i→∞

‖gi‖Lp ,

where the infimum is taken over all sequences (gi) of nonnegative Borel functions,

for which there exists a sequence ui
Lp

→ u, such that gi is an upper gradient of ui

for all i.

Theorem 7.19. The spaces C1,p(X, d, µ) and N1,p(X, d, µ) are isometrically
isomorphic for 1 < p <∞.

Proof. It easily follows from Corollary 7.10 that ‖u‖N1,p = ‖u‖C1,p . �

8. Sobolev spaces M1,p

Although the definition of N1,p makes sense in every metric-measure space, the
theory becomes trivial if the structure of the metric space is not rich enough. Indeed,
if there are no rectifiable curves, except for the constant ones, then N1,p = Lp. This
follows from an obvious observation that on such a space g ≡ 0 is an upper gradient
of every Borel function u. This is the case if, for example, the underlying metric
space is a Cantor type set or the Van Koch snowflake. As the ternary Cantor set
and the Van Koch snowflake are very interesting from the point of view of analysis
on these spaces, one could expect to have another approach that would provide a
rich theory of Sobolev spaces on these metric-measure spaces.36 The purpose of this
section is to discuss M1,p spaces whose definition follows Theorem 2.2. This theory
will be rich even if the underlying space contain constant rectifiable curves only,
like the Cantor set or the Van Koch snowflake. If, however, the metric space has
sufficiently many rectifiable curves which are, in addition, well distributed, then
the two approaches are equivalent i.e. M1,p = N1,p. This will be discussed in
Section 11.

Throughout this section (X, d, µ) will be a metric-measure space. At the end
we will assume that µ is doubling.

Definition 8.1. For 0 < p < ∞ we define M1,p(X, d, µ) to be the set of all
functions u ∈ Lp(X) for which there exists 0 ≤ g ∈ Lp(X) such that

(8.1) |u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)) µ-a.e.

Denote by D(u) the class of all nonnegative Borel functions g that satisfy (8.1).37

Thus u ∈ M1,p if and only if u ∈ Lp and D(u) ∩ Lp 6= ∅. The space M1,p is linear
and equipped with the norm38

‖u‖M1,p = ‖u‖Lp + inf
g∈D(u)

‖g‖Lp .

We can also define the local space M1,p
loc by assuming that u ∈ Lp

loc and D(u)∩Lp
loc 6=

∅.

36The ternary Cantor set and the Van Koch snowflake are equipped with the Euclidean

metric and the Hausdorff measure in a suitable dimension.
37Inequality (8.1) holds a.e. in the sense that there is a set N ⊂ X of measure zero and such

that the inequality holds true for all x, y ∈ X \N .
38Obviously ‖ · ‖M1,p is a norm only when 1 ≤ p < ∞. However, for simplicity, we will call

it norm in the whole range 0 < p < ∞.
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According to Theorem 2.2 and Theorem 7.13 we have

(8.2) N1,p(Ω, | · |,Ln) = W 1,p(Ω) = M1,p(Ω, | · |,Ln)

provided 1 < p < ∞ and Ω ⊂ Rn is a smooth bounded domain or Ω = Rn. Hence
in this case we also have that M1,p(Ω, | · |,Ln) = N1,p(Ω, | · |,Ln).

Exercise 8.2. Show that, in general, M1,1 6= W 1,1 and hence N1,1 6= M1,1 by
showing that u(x) = −x/(|x| log |x|) belongs to W 1,1(I), but it does not belong to
M1,1(I), where I = (−1/4, 1/4).

Let us list now two basic properties of the space M1,p.

Theorem 8.3. M1,p(X, d, µ) is a Banach space for 1 ≤ p <∞.

Classical result on density of smooth functions in the Sobolev space has the
following analogue.

Theorem 8.4. Assume given u ∈ M1,p(X, d, µ), 0 < p < ∞. Then for every
ε > 0 there is a Lipschitz function ϕ on X such that

(1) µ({u 6= ϕ}) < ε,
(2) ‖u− ϕ‖M1,p < ε.

Note that in addition to the approximation in norm, the approximating function
coincides with u off a set of arbitrarily small measure.

It is natural to inquire whether the space M1,p(X, d, µ) is reflexive for 1 < p <
∞. Surprisingly, it is not always the case.

Theorem 8.5. If C ⊂ [0, 1] is the classical ternary Cantor set, then the space
M1,p(C, | · |,Hlog 2/ log 3) contains a subspace isomorphic to `∞ and hence it is not
reflexive nor is separable.

The theorem can be generalized to more general Cantor-type self-similar sets.
Its proof is based on a wavelet characterization of the space M1,p.

On the other hand if the metric-measure space is equipped with a doubling
measure and admits sufficiently many well distributed rectifiable curves then the
space M1,p is reflexive. This is true in the Euclidean case because of (8.2) and,
more generally, when the underlying metric-measure space supports a Poincaré
inequality, see Corollary 11.7.

As we shall see, in the general case of a metric-measure space, M1,p ⊂ N1,p.
However, in most of the cases M1,p is a proper subset of N1,p, i.e. M1,p  N1,p.
This is the case if, for example, X is the classical ternary Cantor set or the Van
Koch snowflake. Indeed, in these cases N1,p = Lp, but M1,p  Lp.

Theorem 8.6. For u ∈M1,p(X, d, µ), where 1 ≤ p <∞, there is a representa-
tive which belongs to N1,p(X, d, µ). Moreover if g ∈ D(u)∩Lp, then 2g is a p-weak
upper gradient of u and hence we have a continuous embedding

M1,p(X, d, µ) ⊂ N1,p(X, d, µ), ‖u‖N1,p ≤ 2‖u‖M1,p .

Proof. Let u ∈M1,p(X, d, µ). According to Theorem 8.4 there is a sequence
uk of Lipschitz functions that converge to u in the norm of M1,p. It easily follows
that we can choose gk ∈ D(uk) ∩ Lp such that gk → g in Lp (why?). Modifying
gk on a set of measure zero we can assume that gk is Borel measurable and that
inequality |uk(x) − uk(y)| ≤ d(x, y)(gk(x) + gk(y)) holds for all x, y ∈ X. We will
prove that 2gk is an upper gradient of uk. Let γ : [0, L] → X be a rectifiable curve
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parametrized by arc-length. We can assume that
∫

γ
gk < +∞, as otherwise the

inequality from the definition of the upper gradient is obvious. It is a rather easy
consequence of Luzin’s theorem that there is a set D ⊂ [0, L] of full measure such
that for each t0 ∈ D there is a sequence hn → 0 for which gk(γ(t0+hn)) → gk(γ(t0)).
The function uk ◦ γ is differentiable a.e. as Lipschitz continuous and hence for a.e.
t0 ∈ D we have∣∣∣∣ ddt |t=t0uk(γ(t))

∣∣∣∣ =
∣∣∣∣ lim
n→∞

uk(γ(t0 + hn))− uk(γ(t0))
hn

∣∣∣∣
≤ lim sup

n→∞

∣∣∣∣d(γ(t0 + hn), γ(t0))
hn

∣∣∣∣ (gk(γ(t0 + hn)) + gk(γ(t0))) ≤ 2gk(γ(t0)),

since d(γ(t0 + hn), γ(t0)) ≤ |hn|. This in turn yields

|uk(γ(L))− uk(γ(0))| =

∣∣∣∣∣
∫ L

0

d

dt
uk(γ(t)) dt

∣∣∣∣∣ ≤
∫ L

0

2gk(γ(t)) dt,

which means 2gk is an upper gradient of uk. Since uk → u in Lp and 2gk → 2g in
Lp it follows from Lemma 7.8 that u has a representative for which 2g is a p-weak
upper gradient. Hence u ∈ N1,p and ‖u‖N1,p ≤ 2‖u‖M1,p . �

The most important result of the classical theory of Sobolev spaces is the
Sobolev embedding theorem. Motivation for the development of the theory of M1,p

spaces comes partially from the fact that the Sobolev embedding theorem holds
in the general setting of M1,p spaces too. The character of the classical Sobolev
embedding depends on the relation between p and the dimension of the Euclidean
space. In order to extend the embedding theorem to the metric-measure case we
replace the dimension by a lower bound for the growth of the measure. We say that
the measure µ satisfies the V (σB0, s, b) condition if

µ(B(x, r)) ≥ brs, whenever B(x, r) ⊂ σB0.

Here s, b > 0, σ ≥ 1 are fixed constants and B0 ⊂ X is a fixed ball.
Observe that a similar estimate holds for doubling measures, Lemma 4.7, al-

though the V (σB0, s, b) condition is weaker than the inequality (4.1) and it does
not imply that the measure is doubling.

Theorem 8.7. Assume that u ∈ M1,p(σB0, d, µ), and g ∈ D(u), where 0 <
p < ∞, σ > 1 and B0 is a fixed ball of radius r0. Assume also that the measure
µ satisfies the V (σB0, s, b) condition. Then there exist constants C, C1 and C2

depending on s, p and σ only such that
(1) If 0 < p < s, then u ∈ Lp∗(B0), p∗ = sp/(s− p) and

(8.3) inf
c∈R

(∫
B0

|u− c|p
∗
dµ

)1/p∗

≤ C

(
µ(σB0)
brs

0

)1/p

r0

(∫
σB0

gp dµ

)1/p

.

(2) If p = s, then

(8.4)
∫

B0

exp
(
C1b

1/s |u− uB0 |
‖g‖Ls(σB0)

)
dµ ≤ C2.

(3) If p > s, then

(8.5) ‖u− uB0‖L∞(B0) ≤ C

(
µ(σB0)
brs

0

)1/p

r0

(∫
σB0

gp dµ

)1/p

.
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In particular u is Hölder continuous39 on B and

(8.6) |u(x)− u(y)| ≤ Cb−1/pd(x, y)1−s/p

(∫
σB0

gp dµ

)1/p

for x, y ∈ B.

Remark 8.8. If p∗ ≥ 1, then (8.3) can be replaced by

(8.7)
(∫

B0

|u− uB0 |p
∗
dµ

)1/p∗

≤ C

(
µ(σB0)
brs

0

)1/p

r0

(∫
σB0

gp dµ

)1/p

.

as the left hand sides of (8.3) and (8.7) are comparable—it easily follows from
Hölder’s inequality. If p∗ < 1 then the function u need not be integrable on B0,
making impossible to evaluate the average value uB0 . This is no longer the problem
when p ≥ s—it follows from the theorem that in this case the function u is integrable
on B0.

Proof of Theorem 8.7. Throughout the proof, C will be a general constant
depending on s, p, and σ only.40 A ≈ B will mean that C−1A ≤ B ≤ CA for some
constant C = C(s, p, σ) ≥ 1.

We can assume that
∫

σB0
gp dµ < ∞ as otherwise the theorem is obvious.

Subtracting a constant from u will not affect inequalities (8.3), (8.4), (8.5) and
(8.6), so by selecting an appropriate constant we may assume that ess inf E |u| = 0,
where E ⊂ σB0 is any subset of positive measure. The set E will be chosen later.
With a correct choice of E we will manage to prove (8.3) with (

∫
B0
|u|p∗ dµ)1/p∗ on

the left hand side, when 0 < p < s, and similar modifications of inequalities (8.4)
and (8.5) in the other two cases.

If g = 0 a.e., then u is constant and hence the theorem follows. Thus we may
assume that

∫
σB0

gp dµ > 0. We may also assume that41

(8.8) g(x) ≥ 2−(1+1/p)

(∫
σB0

gp dµ

)1/p

> 0 for all x ∈ σB0,

as otherwise we replace g by g̃(x) = g(x) +
(∫

σB0
gp dµ

)1/p

.

Let us define auxiliary sets

Ek = {x ∈ σB0 : g(x) ≤ 2k}, k ∈ ZZ.

Clearly Ek ⊂ Ek+1. Observe that

(8.9)
∫

σB0

gp dµ ≈
∞∑

k=−∞

2kpµ(Ek \ Ek−1).

We set ak = supB0∩Ek
|u|. Obviously ak ≤ ak+1. If 0 < p < s, then

(8.10)
∫

B0

|u|p
∗
dµ ≤

∞∑
k=−∞

ap∗

k µ(B0 ∩ (Ek \ Ek−1)).

The idea of the proof of (8.3) is to estimate the right hand side of (8.10) in terms
of the right hand side of (8.9). Similar ideas are used in the other two cases.

39After redefinition on a set of measure zero.
40Dependence on b will always be written explicitly.
41For p ≥ 1 inequality (8.8) holds with 2−(1+1/p) replaced by 2−1.
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Note that measure of the complement of Ek has a nice upper bound

(8.11) µ(σB0 \ Ek) = µ({x ∈ σB0 : g(x) > 2k}) ≤ 2−kp

∫
σB0

gp dµ,

by Chebyschev’s inequality.42

From (8.1) it follows that

(8.12) |u(x)− u(y)| ≤ 2k+1d(x, y) for x, y ∈ Ek,

so u|Ek
is 2k+1-Lipschitz. For k ∈ ZZ we define

(8.13) rk = 2b−1/sµ(σB0 \ Ek−1)1/s.

For x ∈ σB0 let k be the least integer such that x ∈ Ek. Then a.e. point x ∈ σB0

has the property that µ(σB0 \ Ek−1) > 0 (why?). Thus it suffices to consider only
those k for which µ(σB0 \ Ek−1) > 0 or, equivalently, rk > 0.

Assume that k ∈ ZZ and xk ∈ Ek are such that

(8.14) µ(σB0 \ Ek−1) > 0 and B(xk, rk) ⊂ σB0.

Then
µ(B(xk, rk)) ≥ brs

k > µ(σB0 \ Ek−1)

and hence B(xk, rk) ∩ Ek−1 6= ∅. Thus there is xk−1 ∈ Ek−1 such that

d(xk, xk−1) < rk ≤ 2b−1/s2−(k−1)p/s

(∫
σB0

gp dµ

)1/s

,

by (8.13) and (8.11). Repeating this construction with xk ∈ Ek replaced by xk−1 ∈
Ek−1, and then by xk−2 ∈ Ek−2 ect. we finally obtain for k > k0 a sequence

xk ∈ Ek, xk−1 ∈ Ek−1, . . . , xk0 ∈ Ek0 ,

such that

(8.15) d(xk−i, xk−(i+1)) < rk−i ≤ 2b−1/s2−(k−(i+1))p/s

(∫
σB0

gp dµ

)1/s

for i = 0, 1, 2, . . . , k − k0 − 1. Hence

d(xk, xk0) < rk + rk−1 + . . .+ rk0+1 ≤ 2b−1/s

(∫
σB0

gp dµ

)1/s k−1∑
j=k0

2−jp/s

< 2−k0p/s 2b−1/s

1− 2−p/s

(∫
σB0

gp dµ

)1/s

.

This is all true, provided B(xk−i, rk−i) ⊂ σB0 for i = 0, 1, 2, . . . , k − k0 − 1 (cf.
(8.14)).43 This condition may or may not be satisfied. If we choose, however,
xk ∈ B0, k > k0 and require that

(8.16) 2−k0p/s 2b−1/s

1− 2−p/s

(∫
σB0

gp dµ

)1/s

≤ (σ − 1)r0,

42Chebyschev’s inequality says that tpµ({|f | > t}) ≤
∫

X |f |p dµ for f ∈ Lp, p > 0 and all

t > 0. This is true for any measure µ.
43We choose the first point in the sequence xk, such that µ(σB0 \ Ek−1) > 0. Then also

µ(σB0 \ Ek−i) > 0 for all i as above.
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then clearly, all the balls B(xk−i, rk−i), i = 0, 1, 2, . . . , k − k0 − 1 are contained in
σB0.44 Condition (8.16) is equivalent to

(8.17) 2k0 ≥
(

2
(1− 2−p/s)(σ − 1)

)s/p

(brs
0)−1/p

(∫
σB0

gp dµ

)1/p

.

Lower bound (8.8) implies that Ek = ∅ for sufficiently small k. On the other hand
µ(Ek) ↑ µ(σB0) as k →∞. Hence there is k̃0 such that

(8.18) µ(Ek̃0−1) <
µ(σB0)

2
≤ µ(Ek̃0

).

The inequality on the right yields Ek̃0
6= ∅ and hence according to (8.8)

2−(1+1/p)

(∫
σB0

gp dµ

)1/p

≤ g(x) ≤ 2k̃0

for x ∈ Ek̃0
. At the same time the left inequality at (8.18) and (8.11) imply

µ(σB0)
2

< µ(σB0 \ Ek̃0−1) ≤ 2−(k̃0−1)p

∫
σB0

gp dµ.

Thus both inequalities yield

2−(1+1/p)

(∫
σB0

gp dµ

)1/p

≤ 2k̃0 ≤ 21+1/p

(∫
σB0

gp dµ

)1/p

.

Choose the least integer ` ∈ ZZ such that

2` > max

{
21+1/p

(
2

(1− 2−p/s)(σ − 1)

)s/p

, 1

}(
µ(σB0)
brs

0

)1/p

and set k0 = k̃0 + `. The V (σB0, s, b) condition implies that ` > 0. Hence (8.18)
yields µ(Ek0) > 0. Then inequality (8.17) holds true and

(8.19) 2k0 ≈ (brs
0)−1/p

(∫
σB0

gp dµ

)1/p

.

Recall that ak = supEk∩B0
|u|. For k > k0 and xk ∈ Ek ∩B0 we choose a sequence

xk−1, . . . , xk0 as above. From (8.12) we have

|u(xk)| ≤

(
k−k0−1∑

i=0

|u(xk−i)− u(xk−(i+1))|

)
+ |u(xk0)|

≤

(
k−k0−1∑

i=0

2k−i+1d(xk−i, xk−(i+1))

)
+ |u(xk0)|.

Hence (8.15), upon taking supremum over xk ∈ Ek ∩B0, yields

ak ≤ 8b−1/s

(∫
σB0

gp dµ

)1/s k−1∑
j=k0

2j(1−p/s) + sup
Ek0∩σB0

|u|.

44Inequality (8.16) comes from the estimate dist (B0, X \σB0) ≥ (σ− 1)r0. Hence it implies
rk + rk−1 + . . . + rk0+1 < dist (B0, X \ σB0). We need assume that σ > 1 in order to have the

right hand side of (8.16) positive.
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Next, we want to estimate the last term supEk0∩σB0
|u|. Since µ(Ek0) > 0, we can

assume that ess inf Ek0∩σB0 |u| = 0,45 i.e. there is a sequence yi ∈ Ek0 such that
u(yi) → 0 as i→∞. Invoking (8.12), for x ∈ Ek0 ∩ σB0 we have

|u(x)| = lim
i→∞

|u(x)− u(yi)| ≤ 4σr02k0 .

Concluding, for k > k0 we have proved that

(8.20) ak ≤ 8b−1/s

(∫
σB0

gp dµ

)1/s k−1∑
j=k0

2j(1−p/s) + 4σr02k0 .

For k ≤ k0 we will use the estimate ak ≤ ak0 ≤ 4σr02k0 .
Case 1: 0 < p < s. For every k ∈ ZZ we have

ak ≤ 8b−1/s

(∫
σB0

gp dµ

)1/s k∑
j=−∞

2j(1−p/s) + 4σr02k0

= C2k(1−p/s)b−1/s

(∫
σB0

gp dµ

)1/s

+ 4σr02k0 .

We employed here the fact that 1−p/s > 0. Hence applying (8.10), (8.9) and (8.19)
we get∫

B0

|u|p
∗
dµ ≤

∞∑
k=−∞

ap∗

k µ(B0 ∩ (Ek \ Ek−1))

≤ C

(
b−p∗/s

(∫
σB0

gp dµ

)p∗/s ∞∑
k=−∞

2kpµ(Ek \ Ek−1) + rp∗

0 2k0p∗µ(B0)

)

≤ C

(
1 +

µ(B0)
brs

0

)
b−p∗/s

(∫
σB0

gp dµ

)p∗/p

.

Now observe that the V (σB0, s, b) condition implies that 1 + µ(B0)/(brs
0) ≤

2µ(B0)/(brs
0) and hence inequality (8.3) follows.

Case 2: p = s. It follows from Jensen’s inequality46 that

(8.21)
(∫

B0

exp
(
C1b

1/s |u− uB0 |
‖g‖Ls(σB0)

)
dµ

)1/2

≤
∫

B0

exp
(
C1b

1/s |u|
‖g‖Ls(σB0)

)
dµ

and hence it is enough to estimate the integral on the right hand side of (8.21). It
follows from (8.19) that

(8.22) ak0 ≤ 4σr02k0 ≤ Cb−1/s

(∫
σB0

gs dµ

)1/s

.

Since 2j(1−s/s) = 1, (8.20) and (8.22) yield

ak ≤ C̃b−1/s

(∫
σB0

gs dµ

)1/s

(k − k0)

45See a remark at the beginning of the proof.
46Jensen’s inequality says that if µ is a finite measure on a set X and ϕ : [0,∞) → [0,∞) is

a convex function, then ϕ(
∫

X |f | dµ) ≤
∫

X ϕ(|f |) dµ for any measurable function f .
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for k > k0. We split the integral on the right hand side of (8.21) into two parts: we
estimate the integrals over B0 ∩Ek0 and B0 \Ek0 separately. For the first part we
have

1
µ(B0)

∫
B0∩Ek0

... ≤ 1
µ(B0)

µ(B0 ∩ Ek0) exp
(
C1b

1/s ak0

‖g‖Ls(σB0)

)
≤ exp(C1C).

The second part is estimated as follows

1
µ(B0)

∫
B0\Ek0

... ≤ 1
µ(B0)

∞∑
k=k0+1

exp
(
C1b

1/s ak

‖g‖Ls(σB0)

)
µ(B0 ∩ (Ek \ Ek−1))

≤ 1
µ(B0)

∞∑
k=k0+1

exp(C1C̃(k − k0))µ(Ek \ Ek−1) = ♥.

We choose the constant C1 so that exp(C1C̃) = 2s. We have

♥ ≤ 1
µ(B0)

2−sk0

∞∑
k=−∞

2ksµ(Ek \ Ek−1) ≤ C,

where the last inequality is a direct consequence of (8.19), (8.9) and the V (σB0, s, b)
condition.
Case 3: p > s. It follows from (8.20) and (8.19) that

ak ≤ 8b−1/s

(∫
σB0

gp dµ

)1/s ∞∑
j=k0

2j(1−p/s) + 4σr02k0

≤ C

(
µ(σB0)
brs

0

)1/p

r0

(∫
σB0

gp dµ

)1/p

(8.23)

for all k > k0. We employed here the fact that 1− p/s < 0. This, however, implies
that u is bounded on B0

47 with the right hand side of (8.23) being the bound for the
supremum norm of u. Now estimate (8.5) follows from the elementary inequality
‖u− uB0‖L∞(B0) ≤ 2‖u‖L∞(B0). Thus we are left with the proof of (8.6).

If x, y ∈ B0, d(x, y) ≤ (σ−1)r0/(2σ), and B1 = B(x, 2d(x, y)), then σB1 ⊂ σB0

and hence (8.5) applied on B1 yields

|u(x)− u(y)| ≤ 2‖u− uB1‖L∞(B1) ≤ Cb−1/pd(x, y)1−s/p

(∫
σB1

gp dµ

)1/p

.

If, however, d(x, y) > (σ−1)r0/(2σ), then the upper bound for |u(x)−u(y)| follows
directly from (8.5) applied on B0. The proof is complete. �

Let us assume now that the measure µ is doubling with the doubling constant
Cd. Then Lemma 4.7 implies that the measure µ satisfies the V (σB0, s, b) condition
for every ball B0, with s = log2 Cd and b = 4−sσ−sr−s

0 µ(σB0). This gives the
following corollary.

Corollary 8.9. Assume that the measure µ is doubling with the doubling
constant Cd and let s = log2 Cd be the associated homogeneous dimension. Fix a
ball B of radius r and σ > 1. Assume that u ∈M1,p(σB, d, µ) and g ∈ D(u), where
0 < p < ∞. Then there exist constants C, C1 and C2 depending on Cd, p and σ
only such that

47More precisely, u is equal a.e. to a bounded function.
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(1) If 0 < p < s, then u ∈ Lp∗(B), p∗ = sp/(s− p), and

(8.24) inf
c∈R

(∫
B

|u− c|p
∗
dµ

)1/p∗

≤ Cr

(∫
σB

gp dµ

)1/p

.

(2) If p = s, then∫
B

exp
(
C1
µ(σB)1/s

r

|u− uB |
‖g‖Ls(σB)

)
dµ ≤ C2.

(3) If p > s, then u is Hölder continuous on B and

|u(x)− u(y)| ≤ Crs/pd(x, y)1−s/p

(∫
σB

gp dµ

)1/p

for x, y ∈ B.

9. Sobolev spaces P 1,p

This section is devoted to an approach to Sobolev spaces on metric-measure
spaces suggested by Theorem 2.1. Throughout this section we assume that (X, d, µ)
is a metric-measure space, µ is doubling with the doubling constant Cd and s =
log2 Cd is the associated homogeneous dimension.

Definition 9.1. Fix σ ≥ 1 and 0 < p < ∞. We say that the pair (u, g),
u ∈ L1

loc, 0 ≤ g ∈ Lp
loc, satisfies the p-Poincaré inequality if

(9.1)
∫

B

|u− uB | dµ ≤ r

(∫
σB

gp dµ

)1/p

on every ball B of radius r.

The class of u ∈ L1
loc for which there exists 0 ≤ g ∈ Lp

loc so that the pair
(u, g) satisfies the p-Poincaré inequality (9.1) will be denoted by P 1,p

σ,loc(X, d, µ)
and P 1,p

loc (X, d, µ) =
⋃

σ≥1 P
1,p
σ,loc(X, d, µ). If in addition g ∈ Lp, then we do not

write ‘loc’.48

If u ∈ M1,p(X, d, µ), p ≥ 1, and g ∈ D(u) ∩ Lp, then integrating inequality
(8.1) and applying Hölder’s inequality yield

(9.2)
∫

B

|u− uB | dµ ≤ 4r
∫

B

g dµ ≤ 4r
(∫

B

gp dµ

)1/p

.

Thus the pair (u, 4g) satisfies the p-Poincaré inequality with σ = 1 and hence
M1,p(X, d, µ) ⊂ P 1,p

1 (X, d, µ)∩Lp. The above argument does not apply for 0 < p <
1. We can, however, go slightly below 1. To this end we need apply Corollary 8.9.

Theorem 9.2. Fix σ > 1. If u ∈ M1,p(X, d, µ) and g ∈ D(u), where p ≥
s/(s+ 1), then

(9.3)
∫

B

|u− uB | dµ ≤ Cr

(∫
σB

gp dµ

)1/p

on every ball B of radius r,

with C depending on Cd, p and σ only. In particular M1,p(X, d, µ) ⊂ P 1,p(X, d, µ)∩
Lp.

Proof. Fix a ball B. Then u ∈ M1,p(σB, d, µ) ⊂ M1,s/(s+1)(σB, d, µ). Since
the Sobolev exponent associated with s/(s+ 1) equals (s/(s+ 1))∗ = 1, inequalities
(8.24), (8.7) and the Hölder inequality imply (9.3). �

48Thus u ∈ P 1,p if u ∈ L1
loc and there exist σ ≥ 1 and 0 ≤ g ∈ Lp such that (9.1) holds true.
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Inequality (9.3) seems much weaker than (8.1), but as we shall see, the two
inequalities are almost equivalent. Indeed, we have the following

Theorem 9.3. The following conditions are equivalent for s/(s+ 1) < p <∞:
(1) u ∈M1,p(X, d, µ).
(2) u ∈ Lp(X) and there exist 0 ≤ g ∈ Lp and constants σ ≥ 1 and 0 < q < p

such that

(9.4)
∫

B

|u− uB | dµ ≤ r

(∫
σB

gq dµ

)1/q

on every ball B of radius r.

Proof. The implication from 1. to 2. follows from Theorem 9.2 with q =
s/(s+ 1) and σ > 1. The implication from 2. to 1. follows from the result below.

Theorem 9.4. 49 If the pair (u, g) satisfies the p-Poincaré inequality (9.1),
p > 0, then

|u(x)− u(y)| ≤ Cd(x, y)
((
M2σd(x,y)g

p(x)
)1/p +

(
M2σd(x,y)g

p(y)
)1/p

)
, µ-a.e.

where MRg
p is the Hardy–Littlewood maximal function.50

Indeed, by the assumption 0 ≤ g ∈ Lp and the pair (u, g) satisfies the q-
Poincaré inequality (9.4). Since gq ∈ Lp/q and p/q > 1, Theorem 4.8 implies that
Mgq ∈ Lp/q and hence (Mgq)1/q ∈ Lp. Now the implication follows from the
inequality

|u(x)− u(y)| ≤ Cd(x, y)
(

(Mgq)1/q (x) + (Mgq)1/q (y)
)

which is a direct consequence of (9.4) and Theorem 9.4. Thus we are left with the
proof of Theorem 9.4.

Proof of Theorem 9.4. Let x, y ∈ X be Lebsegue points of u. Let Bi(x) =
B(x, ri) = B(x, 2−id(x, y)), i = 0, 1, 2, . . . Then uBi(x) → u(x) as i → ∞ (cf.
Theorem 4.9). We have

|u(x)− uB0(x)| ≤
∞∑

i=0

|uBi(x) − uBi+1(x)| ≤
∞∑

i=0

µ(Bi(x))
µ(Bi+1(x))

∫
Bi(x)

|u− uBi(x)| dµ

≤ C
∞∑

i=0

ri

(∫
σBi(x)

gp dµ

)1/p

≤ C
∞∑

i=0

ri
(
Mσd(x,y)g

p(x)
)1/p

= Cd(x, y)
(
Mσd(x,y)g

p(x)
)1/p

,

and by symmetry a similar estimate holds at y too

|u(y)− uB0(y)| ≤ Cd(x, y)
(
Mσd(x,y)g

p(y)
)1/p

.

We need one more inequality to go

|uB0(x) − uB0(y)| ≤ |uB0(x) − u2B0(x)|+ |uB0(y) − u2B0(x)|

≤ C

∫
2B0(x)

|u− u2B0(x)| dµ ≤ Cd(x, y)
(
M2σd(x,y)g

p(x)
)1/p

.

49In the Euclidean case Theorem 9.4 is the implication 3. to 4. of Theorem 2.1.
50See (2.4).
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Now the theorem follows from the triangle inequality

|u(x)− u(y)| ≤ |u(x)− uB0(x)|+ |uB0(x) − uB0(y)|+ |u(y)− uB0(y)|

and the above estimates. This completes the proof of Theorem 9.4 and hence that
for Theorem 9.3. �

It turns out that Theorem 9.4 can be inverted.

Theorem 9.5. If the functions u ∈ L1
loc and g ∈ Lp

loc, s/(s + 1) < p < ∞,
satisfy the pointwise inequality

|u(x)− u(y)| ≤ d(x, y)
((
Mσd(x,y)g

p(x)
)1/p +

(
Mσd(x,y)g

p(y)
)1/p

)
µ-a.e.

with some constant σ ≥ 1, then∫
B

|u− uB | dµ ≤ Cr

(∫
6σB

gp dµ

)1/p

for every ball B of radius r.

Proof. Fix a ball B of radius r. For x, y ∈ 2B we have

(9.5) |u(x)− u(y)| ≤ d(x, y)
((
M(gpχ

6σB)(x)
)1/p +

(
M(gpχ

6σB)(y)
)1/p

)
.

The weak type estimate for the maximal function, Theorem 4.8, implies that

(9.6) µ
({

(M(gpχ
6σB))1/p > t

})
≤ C

tp

∫
6σB

gp dµ.

Hence (M(gpχ
6σB))1/p belongs to the Marcinkiewicz space,51 (M(gpχ

6σB))1/p ∈
Lp

w(X).
Clearly Lp ⊂ Lp

w, by Chebyschev’s inequality, but, in general, Lp
w functions

need not be Lp integrable.52 We only have local integrability with exponents less
than p as the following result shows.

Lemma 9.6. 53 If 0 < µ(E) <∞, then Lp
w(E,µ) ⊂ Lq(E,µ) for all 0 < q < p.

Moreover if u satisfies

(9.7) µ({x ∈ E : |u(x)| > t}) ≤ mt−p for all t > 0,

then

(9.8)
(∫

E

|u|q dµ
)1/q

≤ 21/q

(
q

p− q

)1/p(
m

µ(E)

)1/p

.

Proof. We represent the integral
∫

E
|u|q dµ using the Cavalieri principle.54

Then we split it into two integrals
∫ t0

0
... and

∫∞
t0
... Next, for t < t0 we estimate

measure of the level sets by µ(X) and for t > t0 using (9.7). Choosing appropriate
constant t0 yields the result. �

51We say that the function u belongs to the Marcinkiewicz space Lp
w(X), p > 0 (called also

weak Lp), if there is a constant m > 0 such that µ({|u| > t}) ≤ mt−p for all t > 0.
52x−1 ∈ L1

w(0, 1), but x−1 6∈ L1(0, 1).
53The lemma is true for any finite measure.
54Cavalieri’s principle says that for any σ-finite measure µ and f ∈ Lq , q > 0, we have∫

E |f |
q dµ = q

∫∞
0 tq−1µ({|f | > t}) dt. It easily follows from Fubini’s theorem.
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Thus
(
M(gpχ

6σB)
)1/p ∈ Lq(2B), for every 0 < q < p. Therefore from (9.5)

we conclude that u ∈ M1,q(2B, d, µ), and
(
M(gpχ

6σB)
)1/p ∈ D(u) ∩ Lq. Taking

s/(s+ 1) = q < p, and applying Corollary 8.9 we obtain∫
B

|u− uB | dµ ≤ Cr

(∫
2B

(
M(gpχ

6σB)
)q/p

dµ

)1/q

≤ Cr

(∫
6σB

gp dµ

)1/p

.

The last inequality follows from (9.8) and (9.6). �

Let us define the space M1,p
w (X, d, µ) as the class of all u ∈ Lp with D(u)∩Lp

w 6=
∅. If the pair (u, g) satisfies the p-Poincaré inequality (9.1), p > 0, then Theorem 9.4
implies

|u(x)− u(y)| ≤ Cd(x, y)
(

(Mgp)1/p (x) + (Mgp)1/p (y)
)
.

This together with the weak type estimate for the maximal function yields
P 1,p(X, d, µ) ∩ Lp ⊂M1,p

w (X, d, µ).
The above results, all together, give the following inclusions

M1,p ⊂ P 1,p ∩ Lp ⊂M1,p
w ⊂M1,q

loc

The first inclusion holds for p ≥ s/(s+1), while the remaining ones for all 0 < q < p.
Let us close this section with a general Sobolev embedding theorem for P 1,p

spaces. The case 0 < p < s follows from the embedding P 1,p ⊂ M1,α
loc for all

0 < α < p and Corollary 8.9.

Theorem 9.7. Assume that the pair u ∈ L1
loc, and 0 ≤ g ∈ Lp

loc satisfies the
p-Poincaré inequality (9.1) with 0 < p <∞ and σ ≥ 1.

(1) If 0 < p < s, then for every 0 < h < p∗ = sp/(s− p)

(9.9) inf
c∈R

(∫
B

|u− c|h dµ
)1/h

≤ Cr

(∫
6σB

gp dµ

)1/p

.

If in addition g ∈ Lq
loc, p < q < s, then

(9.10) inf
c∈R

(∫
B

|u− c|q
∗
dµ

)1/q∗

≤ Cr

(∫
6σB

gq dµ

)1/q

,

where q∗ = sq/(s− q) and B is any ball of radius r.
(2) If p = s, then∫

B

exp
(
C1µ(6σB)1/s|u− uB |

r‖g‖Ls(6σB)

)
dµ ≤ C2.

(3) If p > s, then u is locally Hölder continuous and

|u(x)− u(y)| ≤ Crs/pd(x, y)1−s/p

(∫
6σB0

gp dµ

)1/p

for all x, y ∈ B, where B is an arbitrary ball of radius r0.
The constants in the theorem depend on p, q, h, Cd, and σ.

Remarks 9.8. The theorem is not optimal:
(a) 6σB can be reduced to (1 + ε)σB. Under some geometric assumptions about
the space one can further reduce 6σB to B. It suffices to assume that the space is
proper and that the distance between any two points equals infimum of lengths of
curves connecting the points.
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(b) In the case 0 < p < s one can prove that u ∈ Lp∗

w (B), along with a correspond-
ing estimate. This is more than just proving integrability for all h < p∗. If one
makes an additional assumption that the pair (u, g) satisfies the so called trunca-
tion property, then one can even prove integrability with the exponent p∗.
(c) Assuming geometric property discussed in 1. and the truncation property dis-
cussed in 2. one obtains the optimal version of the Sobolev inequality, which, when
applied to the Euclidean case gives the sharp version of the Sobolev embedding.
Sharp, except for the constant because the “metric” approach is to general to give
the sharp constant.
(d) Assuming connectivity of the space, one can improve inequality in the case
p = s > 1 by proving the integrability of exp((...)s/(s−1)), known as the Trudinger
inequality.

Proof of Theorem 9.7 in the case 0 < p < s. Fix a ball B of radius r.
By Poincaré inequality (9.1) and Theorem 9.4 for x, y ∈ 6

5B we have

|u(x)− u(y)| ≤ Cd(x, y)
((
M(gpχ

6σB)(x)
)1/p +

(
M(gpχ

6σB)(y)
)1/p

)
.

When 0 < α < p, weak type estimates and Lemma 9.6 yield
(
M(gpχ

6σB)
)1/p ∈

Lα( 6
5B) with (∫

6
5 B

(
M(gpχ

6σB)
)α/p

)1/α

≤ C

(∫
6σB

gp dµ

)1/p

.

Hence by Corollary 8.9,

inf
c∈R

(∫
B

|u− c|α
∗
dµ

)1/α∗

≤ Cr

(∫
6σB

gp dµ

)1/p

.

Since h = α∗ ↑ p∗ as α ↑ p, inequality (9.9) follows. Assume now that q ∈ Lq
loc,

p < q < s, then
(
M(gpχ

6σB)
)1/p ∈ Lq(6σB) with(∫

σB

(
M(gpχ

6σB)
)q/p

)1/q

≤ C

(∫
6σB

gq dµ

)1/q

and again, inequality (9.10) follows from Corollary 8.9. �

I believe that in the remaining two cases p = s and p > s a similar argument
can be used. It would, however, require a closer look at the proof of Theorem 8.7 to
see whether the weak Lp estimates that we obtain55 are enough to conclude desired
inequalities.

10. Abstract derivative and Sobolev spaces H1,p.

In order to get a richer theory than the one developed in the previous sections,
we need assume more about the space. Here we will assume the existence of an
abstract operator that shares many properties with the derivative. This will lead
to a nice characterization of the space P 1,p. In the next section we will see that
the existence of such abstract derivative is a surprising consequence of another
very natural assumption about the space, the condition of supporting Poincaré
inequality.

55Instead of Lp estimates assumed in Theorem 8.7.
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Theorem 10.1. Let (X, d, µ) be a metric-measure space equipped with a dou-
bling measure and let N be a positive integer. Suppose that there is a constant
C > 0 and a linear operator D which associates with each locally Lipschitz function
u a measurable function Du : X → RN in such a way that

(1) If u is L-Lipschitz with L ≥ 1, then |Du| ≤ CL µ-a.e.
(2) If u is locally Lipschitz and constant in an open set Ω ⊂ X, then Du = 0

µ-a.e. in Ω.
Let H1,p(X, d, µ) be the Banach space defined as the closure of the set of lo-
cally Lipschitz functions with respect to the norm ‖u‖ = ‖u‖Lp + ‖Du‖Lp . Then
P 1,p(X, d, µ) ∩ Lp ⊂ H1,p(X, d, µ) for 1 ≤ p <∞.

In general, there may be a problem with the definition of Du for a given u ∈
H1,p. Namely, if uk and vk are two sequences of locally Lipschitz functions such
that both converge to u in Lp, and Duk → g in Lp, Dvk → h in Lp, g 6= h, then
(u, g) and (u, h) represent two different elements in H1,p.56 In such a case we say
that the gradient is not uniquely determined. Fortunately, for a reasonable class of
spaces we have uniqueness of the gradient.

We say that the uniqueness of the gradient holds if for every sequence of locally
Lipschitz functions, un, such that un → 0 in Lp and Dun → g in Lp, we have g = 0
a.e. In such a case we can associate with each u ∈ H1,p a unique Du obtained by
taking the limit of ‘gradients’ for any approximating sequence of locally Lipschitz
functions.

Theorem 10.2. Let (X, d, µ) be a metric-measure space equipped with a dou-
bling measure and let N be a positive integer. Suppose that there is a constant
C > 0 and a linear operator D which associates with each locally Lipschitz function
u a measurable function Du : X → RN in such a way that

(1) If u is L-Lipschitz with L ≥ 1, then |Du| ≤ CL µ-a.e.
(2) If u is locally Lipschitz and constant in a measurable set E ⊂ X, then

Du = 0 µ-a.e. in E.
Let 1 ≤ p < ∞ and σ ≥ 1. Assume that for every locally Lipschitz function u,
the pair (u, |Du|) satisfies the p-Poincaré inequality (9.1). Define H1,p(X, d, µ)
as in Theorem 10.1. Then H1,p(X, d, µ) = P 1,p(X, d, µ) ∩ Lp, the uniqueness of
the gradient holds and |Du| ≤ C ′g a.e., whenever (u, g) satisfies the p-Poincaré
inequality.57 Moreover for 1 < p <∞ the space H1,p(X, d, µ) is reflexive.

Proof of Theorem 10.1 for p > 1. Assume that u ∈ P 1,p ∩ Lp i.e., there
exists 0 ≤ g ∈ Lp and σ ≥ 1 such that the p-Poincaré inequality (9.1) holds true.

We need construct a sequence of locally Lipschitz functions approximating u.
To this end fix ε > 0 and choose {B̃i} to be a maximal disjointed family of balls
in X of radius ε/4. Then the family {2B̃i} forms a covering of X. Set Bi = 4B̃i.
The doubling property implies that there is a constant C such that no point of X
belongs to more than C balls Bi.58 Now we construct a Lipschitz partition of unity

56Hence the embedding P 1,p ∩ Lp ⊂ H1,p has to be properly understood: for every u ∈
P 1,p ∩Lp there is a Cauchy sequence with respect to the H1,p norm of locally Lipschitz functions
that converge to u in Lp.

57Here the pair (u, g) may satisfy the p-Poincaré inequality (9.1) with σ replaced by another

constant τ ≥ 1.
58Cf. the proof of Lemma 4.3.
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{ϕi} subordinated to the given family of balls {Bi}, i.e.,
∑

i ϕi ≡ 1, 0 ≤ ϕi ≤ 1,
suppϕi ⊂ Bi and all the functions ϕi are Cε−1-Lipschitz. To this end it is enough to
choose ϕi(x) = ψ(d(xi, x)/ε)(

∑
k ψ(d(xk, x)/ε))−1, where ψ is a smooth function,

ψ ≡ 1 on [0, 1/2], ψ ≡ 0 on [3/4,∞), 0 ≤ ψ ≤ 1, and xi is the center of Bi for
i = 1, 2, . . . We put uε =

∑
i ϕiuBi

.
Now we show that uε → u in Lp(X) as ε→ 0. According to Theorem 9.7

(10.1)(∫
B

|u− uB |p dµ
)1/p

≤ Cr

(∫
6σB

gp dµ

)1/p

on every ball B of radius r.

Using the fact that the sum in the definition of uε has uniformly bounded number
of nonzero terms at a given point we obtain

|u− uε|p ≤ C
∑

i

|ϕi|p|u− uBi
|p ≤ C

∑
i

|u− uBi
|pχBi

.

Hence the p-Poincaré inequality (10.1) and the uniform bound for overlapping of
the balls 6σBi yield∫

X

|u− uε|p dµ ≤ C
∑

i

∫
Bi

|u− uBi |p dµ ≤ Cεp
∑

i

∫
6σBi

gp dµ ≤ Cεp

∫
X

gp dµ .

This proves that uε ∈ Lp(X) and uε → u in Lp(X) as ε→ 0. We will also need the
following

Lemma 10.3. Assume that the pair (u, g) is as above. Then

|Duε| ≤ C
∑

i

(∫
3σBi

gp dµ

)1/p

χ
Bi
.

Proof. Fix a ball in the covering {Bi} and denote it by B0. Then for a.e.
x ∈ B0 we have

|Duε(x)| = |D(uε − uB0)(x)| ≤
∑

i: B0∩Bi 6=∅

|Dϕi(x)||uBi
− uB0 |

≤ Cε−1
∑

i: B0∩Bi 6=∅

∫
Bi

∫
B0

|u(y)− u(z)| dµ(y) dµ(z)

≤ Cε−1

∫
3B0

|u(y)− u3B0 | dµ(y) ≤ C

(∫
3σB0

gp dµ

)1/p

.

In the proof of the first inequality we used finite additivity of D and property 2. of
D. The proof of the lemma is complete. �

It follows from the lemma that supε

∫
X
|Duε|p ≤ C

∫
X
gp. Take a sequence

εn → 0. Since p > 1, reflexivity of Lp implies59 that there is a subsequence of
(Duεn

)n weakly convergent in Lp.60 Now, by Mazur’s lemma a sequence of convex
combinations of uεn converges in the norm of H1,p. Since it converges to u in Lp

we conclude that u ∈ H1,p. �

59Every bounded sequence of a reflexive space contains a weakly convergent subsequence.
60This is the only moment when we use the assumption p > 1. The existence of a weakly

convergent subsequence is true for p = 1 as well, but the proof is more difficult as the space L1 is
not reflexive.
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Proof of Theorem 10.2. First we prove the uniqueness of the gradient. Let
un be a sequence of locally Lipschitz functions such that un → 0 in Lp and Dun → g
in Lp. We have to prove that g = 0 a.e. By selecting a subsequence we may assume
that

(10.2)
∫

X

(|un+1 − un|p + |Dun+1 −Dun|p ) dµ ≤ 10−np.

This implies that the sequences (un) and (Dun) converge a.e. Let un+1− un = vn.
Since by the assumption the pair (vn, |Dvn|) satisfies the p-Poincaré inequality,
Theorem 9.4 gives

|(un+1−un)(x)−(un+1−un)(y)| ≤ Cd(x, y)
(

(M|Dvn|p(x))1/p + (M|Dvn|p(y))1/p
)
.

Hence for ` ≥ k ≥ k0

|(u` − uk)(x)− (u` − uk)(y)| ≤ Cd(x, y) (gk0(x) + gk0(y)) ,

where

gk0(x) =
∞∑

n=k0

(M|Dvn|p(x))1/p
.

Taking the limit as `→∞ we obtain

(10.3) |uk(x)− uk(y)| ≤ Cd(x, y)(gk0(x) + gk0(y)) ,

for all k ≥ k0 and almost every x and y. Now we estimate size of the level sets of
the function gk0 :

µ({gk0 > t}) ≤
∞∑

n=k0

µ

({
(M|Dvn|p)1/p

>
t

2n−k0+1

})

≤
∞∑

n=k0

C
2(n−k0+1)p

tp

∫
X

|Dvn|p dµ ≤ C ′t−p10−k0p.

In the middle inequality we used the weak type estimate for the maximal function,
Theorem 4.8, while the last inequality follows from (10.2).

Let Ek0,t = {gk0 > t}. Note that (10.3) implies that uk|X\Ek0,t
is Ct-Lipschitz.

Observe now that if u is locally Lipschitz and u|F is L-Lipschitz, then |Du| ≤
CL almost everywhere in F . Indeed, u|F can be extended to a globally L-Lipschitz
function ū on X.61 Hence |Dū| ≤ CL a.e. Since u− ū = 0 in F , then |D(u− ū)| = 0
a.e. in F and thus |Du| ≤ CL a.e. in F .

Returning to the theorem we get |Duk| ≤ Ct a.e. in X \ Ek0,t, and hence
|g| ≤ Ct a.e. in X \ Ek0,t. Thus µ({|g| > Ct}) ≤ µ(Ek0,t) → 0 as k0 → ∞. Since
t > 0 can be arbitrarily small we conclude that g = 0 a.e. and the uniqueness of
the gradient follows.

By Theorem 10.1 we know that P 1,p(X, d, µ)∩Lp ⊂ H1,p(X, d, µ). The converse
inclusion follows from the definition ofH1,p(X, d, µ) and the fact that the p-Poincaré
inequality holds for locally Lipschitz functions.

Now we will prove that if the pair (u, g) satisfies p-Poincaré inequality, then
|Du| ≤ Cg a.e.

As in the proof of Theorem 10.1 we find a sequence uεn
of locally Lipschitz

functions such that uεn → u in Lp and Duεn is weakly convergent in Lp. Then

61McShane’s lemma states that every L-Lipschitz function defined on a subset of a metric
space can be extended to the entire space as a L-Lipschitz function.
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by Mazur’s lemma a sequence of convex combinations of uεn converges to u in the
norm of H1,p.

It follows from Lemma 10.3 that lim supn→∞ |Duεn
| ≤ Cg a.e. Indeed, this

inequality is fairly easily seen to hold at the Lebesgue points of gp. Since convex
combinations of Duεn

converge to Du in Lp, we conclude that |Du| ≤ Cg a.e.
Finally reflexivity of the space H1,p follows from the fact that this space is

isomorphic to a closed subspace of Lp(X,RN+1). The isomorphism is given by
u 7→ (u,Du). The proof is complete. �

In a general setting of metric spaces there is a natural operator u 7→ |∇+u| =
Lipu which assigns an upper gradient to each locally Lipschitz function u, see
Lemma 6.7. Unfortunately this operator is not linear so Theorems 10.1 and 10.2
do not apply. The operator is, however, easily seen to be sublinear62 and hence we
need a version of the theorems valid for sublinear operators.

The reason why the proof of Theorem 10.1 does not cover the case of the
operator |∇+u| is the lack of linearity by which one cannot use Mazur’s lemma as

in the last step of the proof of Theorem 10.1 to convert a sequence uk
Lp

→ u with
|∇+uk| weakly convergent in Lp into a Cauchy sequence. Therefore in order to
generalize Theorem 10.1 to the case of sublinear operators we need assume that
the Sobolev type space that we consider is a function space, closed under a kind of
weak convergence.

Clearly the operator |∇+u| satisfies assumptions of the following theorem.

Theorem 10.4. Let (X, d, µ) be a metric-measure space equipped with a dou-
bling measure. Suppose that there is a constant C > 0 and an operator |D|
which associates with each locally Lipschitz function u a nonnegative function
|D|u : X → [0,∞) in such a way that

(1) |D|(u+ v) ≤ C(|D|u+ |D|v) and |D|(λu) ≤ C|λ||D|u a.e. whenever u, v
are locally Lipschitz and λ is a real.

(2) If u is L-Lipschitz, then |D|u ≤ CL a.e.
(3) If u is locally Lipschitz and constant on an open set Ω ⊂ X, then |D|u = 0

a.e. in Ω.
Assume that W 1,p(X, d, µ), 1 ≤ p < ∞ is a function space equipped with a norm
‖ · ‖ and with the following properties

(1) If u ∈ Lp is locally Lipschitz and such that |D|u ∈ Lp then u ∈
W 1,p(X, d, µ) and ‖u‖ ≤ C(‖u‖p + ‖|D|u‖p).

(2) If uk ∈W 1,p(X, d, µ)∩Lip loc converges in Lp to w and |D|uk is a sequence
weakly convergent in Lp then w ∈W 1,p(X, d, µ).

Then P 1,p(X, d, µ) ∩ Lp ⊂W 1,p(X, d, µ).

As the proof is almost the same as that for Theorem 10.1, we leave it to the
reader.

The above result together with Lemma 7.8 implies that if the measure is dou-
bling, then P 1,p ∩ Lp ⊂ N1,p for 1 ≤ p < ∞. This and (9.2) yield the following
inclusions.63

62An operator T is sublinear if |T (x + y)| ≤ |Tx|+ |Ty|. Sublinearity is the reason for which

we use here |∇+u| instead of lip u.
63Cf. Theorem 8.6.
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Corollary 10.5. If the measure µ is doubling, then M1,p(X, d, µ) ⊂
P 1,p(X, d, µ) ∩ Lp ⊂ N1,p(X, d, µ) for all 1 ≤ p <∞.

11. Spaces supporting Poincaré inequality

In this section we will always assume that (X, d, µ) is a complete metric space
equipped with a doubling measure.

It is natural to look for restrictions on the class of metric spaces equipped
with a doubling measure so that: (1) the additional conditions are formulated
in metric-measure terms; (2) the Euclidean space and Riemannian manifolds are
among examples; (3) there are many examples far from being Euclidean-like; (4)
the theory becomes much deeper and much more beautiful, than the one developed
for general metric-measure spaces equipped with doubling measures.

The assumption about the existence of a linear operatorD like in Theorems 10.1
and 10.2 does not really meet the standards as it is not formulated in metric-measure
terms. However, the class of spaces supporting p-Poincaré inequalities, discussed
below, meets all the standards. Surprisingly, for these spaces one can prove the
existence of a linear operators of differentiation D as in Theorem 10.2.

Definition 11.1. We say that (X, d, µ) supports a p-Poincaré inequality, 1 ≤
p <∞, if there exist constants CP and σ ≥ 1 such that for every Borel measurable
function u : X → R and every upper gradient g : X → [0,∞] of u, the pair (u, g)
satisfies the family of p-Poincaré inequalities64

(11.1)
∫

B

|u− uB | dµ ≤ CP r

(∫
σB

gp dµ

)1/p

on every ball B of radius r.

Clearly Euclidean space supports p-Poincaré inequalities for all p ≥ 1. Also
compact Riemannian manifolds and complete Riemannian manifolds of nonnega-
tive Ricci curvature are amongst examples. There are, however, many important
examples which have nothing to do with the Euclidean structure; for references, see
Section 12.

Directly from the definition we have N1,p ⊂ P 1,p∩Lp. This and Corollary 10.5
gives

Theorem 11.2. If the space supports the p-Poincaré inequality, 1 ≤ p < ∞,
then N1,p(X, d, µ) = P 1,p(X, d, µ) ∩ Lp.

Thus for spaces supporting p-Poincaré inequalities we have M1,p ⊂ P 1,p∩Lp =
N1,p. If p = 1 we have already noted that there is no equality between N1,1 and
M1,1.65 At the same time we have equality of the spaces M1,p = P 1,p ∩Lp = N1,p

in the Euclidean case when p > 1. This result generalizes to the setting of spaces
supporting Poincaré inequalities as follows.

Theorem 11.3. If 1 < p <∞ and the space supports the q-Poincaré inequality
for some 1 ≤ q < p, then M1,p = P 1,p ∩ Lp = N1,p.

This covers the Euclidean case as Rn supports 1-Poincaré inequality.

64There is a tiny difference between (9.1) and (11.1), namely the existence of the constant

CP in (11.1).
65See an exercise proceeding Theorem 8.3. In particular M1,1 6= P 1,1 ∩ L1.
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The definition of the space supporting the p-Poincaré inequality is very natural,
but not so easy as one needs develop theory of upper gradients in order to formu-
late the definition. One could think about a more elementary approach involving
Lipschitz functions and some particular upper gradients like |∇+u|. This is possible
as the following result shows.

Theorem 11.4. A space (X, d, µ) supports the p-Poincaré inequality, 1 ≤ p <
∞, if and only if there exist constants C > 0, σ ≥ 1 such that for every compactly
supported Lipschitz function u,∫

B

|u− uB | dµ ≤ Cr

(∫
σB

|∇+u|p dµ
)1/p

on every ball B of radius r.

Note that the space supporting the p-Poincaré inequality must contain a lot
of nonconstant rectifiable paths. Indeed, if the only rectifiable paths are constant,
then clearly, g ≡ 0 is an upper gradient of any Borel function and hence the p-
Poincaré inequality cannot be satisfied. This can be turned into a quantitative
form as follows.

Theorem 11.5. A space (X, d, µ) supporting p-Poincaré inequality for some
1 ≤ p <∞, is quasiconvex, i.e. there is a constant C ≥ 1 such that any two points
x and y in the space can be connected by a rectifiable path γ with the length bounded
by `(γ) ≤ Cd(x, y).

Perhaps the most surprising results concerning spaces supporting Poincaré in-
equalities are those about the existence of a “metric differentiable structure”. A
weak version of such a result can be formulated as follows.

Theorem 11.6. Suppose that the space (X, d, µ) supports the p-Poincaré in-
equality 1 < p < ∞. Then there is a positive integer N , a constant C ≥ 1 and a
linear operator D which associates with each locally Lipschitz function u a measur-
able function Du : X → RN such that

(1) If u is L-Lipschitz, then |Du| ≤ CL, µ-a.e.
(2) If u is locally Lipschitz and constant on a measurable set E ⊂ X, then

Du = 0, µ-a.e. in E.
(3) For locally Lipschitz functions u and v, D(uv) = uDv + vDu.
(4) For each locally Lipschitz function u, Lipu ≤ |Du| ≤ C lipu66 and hence

the pair (u, |Du|) satisfies the p-Poincaré inequality.

Note that, in particular, the operator D satisfies the assumptions of Theo-
rem 10.2. Actually there are stronger versions of Theorem 11.6 but they are slightly
more difficult to state.

As a consequence of Theorems 11.6, 10.2 and 11.3 we obtain

Corollary 11.7. If the space (X, d, µ) supports the p-Poincaré inequality,
1 < p < ∞, then N1,p(X, d, µ) is reflexive. If, in addition, the space supports the
q-Poincaré inequality for some 1 ≤ q < p, then M1,p(X, d, µ) is reflexive too.

66In particular lip u ≈ Lip u which is also a consequence of supporting the p-Poincaré in-
equality. Recall that Lip u = |∇+u|.
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12. Historical notes

The references below are by no means complete and many important contribu-
tions are omitted.

There are several excellent textbooks on Sobolev spaces. The one that seems
most appropriate as an introduction to the paper is the book by Evans and Gariepy
[23]. Theorems 2.1 and 2.2 are relatively new, while Theorem 2.3 is classical [23].
Theorem 2.2 was proved by Haj lasz [34]. Equivalence of conditions 1. and 2. in
Theorem 2.1 is due to Calderón [12] for p > 1 and due to Franchi, Haj lasz and
Koskela [26] when p = 1. The equivalence of 1. and 3. is due to Koskela and
MacManus [50] when p > 1 and is proved in [26] in the general case p ≥ 1. The
equivalence of 3. and 4. for p > 1 was proved by Haj lasz and Koskela [37] and
Heinonen and Koskela [42]. The case p = 1 was settled by Haj lasz [35]; it was used
there to prove that 4. characterizes W 1,1 for p = 1.

The theory of rectifiable curves in metric spaces is a mathematical folklore, see
also Väisälä [65]. Theorem 3.9 was proved by Busemann [10], but, perhaps, it is
older. It seems that only notion of the speed and Theorem 3.6 are more recent.
They both appear in books by Ambrosio and Tilli [4] and Burago, Burago and
Iwanov [9]. Our proof follows [4].

The approach to Borel-regular measures presented here is standard and follows
Federer [24]. Theorem 4.1 was proved in [24]. Coifman and Weiss [19] were
the first to realize how important doubling measures are for the development of
harmonic analysis on metric spaces. Many examples of doubling measures can be
found in Stein’s book [63]. Theorem 4.6 is standard, see Semmes [59, Lemma C.3]
or Heinonen [40, Exercise 8.11]. Theorem 4.5 is due to Volberg and Konyagin [66]
in the case of a compact metric space. The general case of a complete metric space
has been established by Luukkainen and Saksman [54]. In the case of the Lebesgue
measure in Rn Theorems 4.8 and 4.9 are proved e.g. in Stein [62]. The proofs
easily generalize to general doubling measures.

The concept of the modulus of the path family was introduced by Ahlfors and
Beurling [1] and developed by Fuglede [30]. This theory constitutes a basic tool for
the theory of quasiregular mappings, see Rickman [55] and Väisälä [65]. Although
all this was developed in Euclidean or Riemannian setting, the extension to the
metric space case is straightforward.

The notion of upper gradient, as in Section 6, has beed introduced by Heinonen
and Koskela [42]. All the results in Section 6 are standard by now.

Being motivated by the work of Heinonen and Koskela [42], Shanmugalingam
[61] introduced the N1,p spaces and Cheeger [15] introduced, independently, spaces
denoted here by C1,p. Theorem 7.19 is due to Shanmugalingam [61]. Most of the
results discussed in Section 7 are proved in [61], although the presentation and
some of the proofs are somewhat different here. Theorem 7.16 for p > 1 was proved
by Cheeger [15]; the case p = 1 is new.

The M1,p spaces have been introduced by Haj lasz [34] (and denoted by W 1,p).
It seems it was the first attempt to define a Sobolev type space in the setting of
general metric-measure spaces. For references to papers involving M1,p spaces, see
Haj lasz [35]. It was assumed in [34] that p > 1 and that the space is of bounded
diameter, but the extension to the case of p > 0 and unbounded spaces is, in many
instances, straightforward. In particular proofs of Theorems 8.3 and 8.4 follow
exactly the same argument as in [34]. Theorem 8.5 and its generalizations to other
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Cantor-type self-similar sets are due to Rissanen [56]. Theorem 8.6 appears in
Shanmugalingam [61]; the proof presented here is a new one. Theorem 8.7 is new.
In the case in which p > 1 and X is of bounded diameter a global version of the
theorem with integrals over entire X has been proved in [34]. The same method
as in [34] easily extends to the general case p > 0, however, the local version with
integrals over balls, as stated in Theorem 8.7, is much harder. It was assumed in
[34] that µ(B(x, r)) ≥ brs for every x and all 0 < r < diamX. If we would like to
apply the argument from [34] to the case considered in Theorem 8.7 we would have
to assume that for every x ∈ B0 and r < r0, µ(B(x, r) ∩B0) ≥ brs, which is much
more than the V (σB0, s, b) condition. Even if diamX <∞, the Hölder continuity
of u ∈M1,p for p > s is new. Indeed, to prove it we need local estimates over balls
and global estimate proved in [34] is not enough (it implies boundedness of u only).

The P 1,p spaces have been introduced by Haj lasz and Koskela in [36] (cf.
Franchi, Lu and Wheeden [28]) and developed in [37]. The case of s/(s+1) ≤ p < 1
of Theorem 9.2 is new. Theorem 9.4 and Theorem 9.3 in the case p > 1 are due to
Haj lasz and Koskela [37]. Theorem 9.5 was proved by Haj lasz and Koskela [37] and
Heinonen and Koskela [42] when p > 1. The case p = 1 was proved by Haj lasz [35]
and the case s/(s+1) < p < 1 is new. Theorem 9.7 and its improvements mentioned
in Remarks 9.8 are due to Haj lasz and Koskela [37], but the proof presented here
is new.

Section 10 is based on [26]. Only Corollary 10.5 is new. Although this corollary
is a straightforward consequence of results in [26] it seems that this observation has
beed overlooked.

Spaces supporting Poincaré inequalities have been introduced in Heinonen and
Koskela [42]. They developed theory of quasiconformal mappings between such
spaces, see Heinonen, Koskela, Shanmugalingam and Tyson [43] for further de-
velopment. The existing examples of spaces supporting the p-Poincaré inequality
make the theory very important. These are: Euclidean space (obvious), compact
Riemannian manifolds (easy), complete Riemannian manifolds of nonnegative Ricci
curvature (a difficult result essentially due to Buser [11] with a recent direct proof by
Saloff-Coste [58]), Carnot-Carathéodory spaces (Franchi and Lanconelli [27], Jeri-
son [45], Franchi, Gutiérrez and Wheeden [25], Garofalo and Nhieu [31], Haj lasz
and Koskela [37], Lanconelli and Morbidelli [52]). Some classes of topological
manifolds (Semmes [59]). Boundaries of hyperbolic buildings (Bourdon and Pajot
[8]) and some other exotic examples (Laakso [51] and Heinonen and Hanson [41]).
Theorem 11.2 seems new. Theorem 11.3 is due to Koskela and MacManus [50].
Theorem 11.4 is due to Keith [48]. Theorem 11.5 was proved in Cheeger [15] and
in Haj lasz and Koskela [37]. Amazing Theorem 11.6 and Corollary 11.7 are due to
Cheeger [15]; for generalizations see Keith [49].

Other papers related to what was discussed here include Ambrosio [2] (BV
spaces on metric spaces), Ambrosio and Kirchheim [3] (currents in metric spaces),
Kinnunen and Martio [47] (capacities in metric spaces), Liu, Lu and Wheeden
[53] (Sobolev spaces on metric spaces with higher order derivatives), Björn, Mac-
manus and Shanmugalingam [7] (potential theory on metric spaces), Goldshtein and
Troyanov [33] (axiomatic theory of Sobolev spaces), Biroli and Mosco [6] (Dirich-
let forms), Grigor’yan, Hu and Lau [32] and Sturm [64] (Heat kernel estimates),
Delmotte [22], Holopainen and Soardi [44] and Woess [67] (analysis on graphs),
Capogna and Garofalo [13], Capogna, Garofalo and Nhieu [14], Chernikov and
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Vodop’yanov [16], Citti, Lanconelli and Montanari [17], Haj lasz and Strzelecki
[39] (nonlinear sub-elliptic equations), Danielli, Garofalo and Nhieu, [21], Cohn
and Lu [18], (Sobolev spaces on Carnot–Carathéodory spaces), Franchi, Serapi-
oni and Serra-Casano [29] (Finite perimeter in the Heisenberg group), Coulhon,
Holopainen and Saloff-Coste [20], Saloff-Coste, [57] (Harnack’s inequality), Bakry,
Coulhon, Ledoux and Saloff-Coste [5] (abstract approach to Sobolev inequalities),
Haj lasz and Martio [38] and Kigami [46] (analysis on fractals).

Recent books on analysis on metric spaces include Ambrosio and Tilli [4],
Heinonen [40] and Semmes [60].
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