
CONTACT GEOMETRY IN THE RESTRICTED THREE-BODY PROBLEM
MINI-COURSE LECTURE NOTES

AGUSTIN MORENO

ABSTRACT. These are expanded notes for an online mini-course taught for postgraduate students at
UDELAR, Montevideo, Uruguay, in November 2020, remotely from the Mittag-Leffler Institute in Djur-
sholm, Sweden.

CONTENTS

1. Introduction. 2
2. Basic concepts. 3
2.1. Symplectic geometry. 3
2.2. Contact geometry. 5
2.3. Open book decompositions. 11
2.4. Global hypersurfaces of section. 14
2.5. Examples of adapted dynamics. 15
2.6. Geodesic flow on Sn, and the geodesic open book. 15
2.7. Double cover of S∗S2. 16
2.8. Magnetic flows and quaternionic symmetry. 18
2.9. The magnetic open book decompositions. 19
3. The three-body problem. 28
4. Moser regularization. 30
4.1. Stark-Zeeman systems. 31
4.2. Levi-Civita regularization. 34
4.3. Kepler problem. 34
5. The perturbative philosophy, and some historical remarks. 35
6. Contact geometry in the restricted three-body problem. 37
6.1. Non-perturbative methods: holomorphic curves. 38
7. Holomorphic curve techniques on the spatial CR3BP. 41
7.1. Step (1): Global hypersurfaces of section. 41
7.2. Step (2): Fixed-point theory of Hamiltonian twist maps. 45
7.3. Alternative approach: dynamics on moduli spaces. 48
References 52

1



2 AGUSTIN MORENO

1. INTRODUCTION.

The current set of notes is an attempt to put into context a series of very recent (and yet un-
published) results of the author in co-authorship with Otto van Koert [MvK, MvK], and the spin-
off [M20]. They also serve the purpose of introducing and threading together a collection of basic
and important notions, disseminated across the literature, with the main driving motivation com-
ing from a very old and famous problem; namely, the three-body problem. We shall be, therefore,
mainly interested in Hamiltonian dynamics, and the intended audience is that with a dynamical
backround/interest; a good deal of openness towards topological/geometric/holomorphic tech-
niques is also recommended. We make no assumptions on previous knowledge on contact or sym-
plectic techniques; but we move at a fast pace.

We shall start from the basics of contact and symplectic geometry, the geometries of classical me-
chanics, and move on to the more topological notion of open book decompositions in the context
of contact topology and Giroux’s correspondence. We will then make a dynamical jump to discuss
the notion of global hypersurfaces of section and adapted dynamics, discussing examples along
the way. After paving the road, we focus on the three-body problem (more precisely, a simpli-
fied version, the circular restricted case=CR3BP) with the main intereset being the spatial problem
where the small mass is allowed to move anywhere, as opposed to the planar problem, which
historically has been of central interest. We sketch some historical account of Poincaré’s original
approach in the planar problem, discuss classical fixed-point theorems and perturbative results,
as well as non-perturbative results coming from holomorphic curve theory à-la Hofer-Wysocki-
Zehnder [HWZ98]. We then introduce the main results of [MvK, MvK, M20], which include:

• Existence of adapted open book decompositions for the spatial CR3BP in the low-energy
range (Thm. M);
• Existence of Hamiltonian return maps reducing the dynamics to dimension 4 (Thm. N);
• A generalization of the classical Poincaré-Birkhoff theorem for Liouville domains in arbi-

trary even dimensions (Thm. O);
• The construction by the author of the holomorphic shadow, which associates to the SCR3BP

(whenever the planar dynamics is convex, and energy is low) a Reeb dynamics on S3 which
is adapted to a trivial open book (Thm. R); and (perturbative) dynamical applications.

We remark that the first two results are valid for arbitrary mass-ratio and are therefore non-
perturbative. We also point out that the second result, while a general fixed-point theorem, hasn’t
so far seen an application to the SCR3BP, for which the generalized notion of a twist condition intro-
duced in [MvK] seems, as of yet, perhaps unsuitable. The third result, while of theoretical interest,
might perhaps lead to insights on the original problem coming from 3-dimensional dynamics; this
is work in progress. In fact, everything in the last sections should be considered work in progress.
So the reader is advised to proceed accordingly, and perhaps get excited enough to contribute to
this growing body of work.

Needless to say, this account will be very biased towards the author’s interests; the subject is
too vast to make it proper justice. The experienced reader is encouraged to complain to the author
for misinterpretations, misrepresentations, omissions, or mistakes. Disseminated across the text
we leave a series of digressions, intended for non-experts and newcomers, which the reader might
choose to skip without affecting the understanding of the main body. They take up a significant
part of the document, in the hope to illustrate the richness of the material. We also sprinkle exercises
here and there, mostly well-known facts and not very technically demanding, although oftentimes
relevant for the main discourse.



CONTACT GEOMETRY IN THE RESTRICTED THREE-BODY PROBLEM MINI-COURSE LECTURE NOTES 3

2. BASIC CONCEPTS.

We start with the basic concepts underlying the general principles of classical mechanics.

2.1. Symplectic geometry. Roughly speaking, symplectic geometry is the geometry of phase-space
(where one keeps track of position and velocities of classical particles, and so it is a theory in even
dimensions). Formally, a symplectic manifold is a pair (M,ω), where M is a smooth manifold with
dim(M) = 2n even, and ω ∈ Ω2(M) is a two-form (the symplectic form) satisfying:

• (closedness) dω = 0;
• (non-degeneracy) ωn = ω ∧ · · · ∧ ω ∈ Ω2n(M) is nowhere-vanishing, and hence a volume

form. Equivalently, the map
X(M)→ Ω1(M)

X 7→ iXω = ω(X, ·)
is a linear isomorphism.

Exercise 1. Prove that the above two definitions of non-degeneracy for ω are equivalent.

Note that symplectic manifolds are always orientable. We assume that M is always oriented by
the orientation induced by the symplectic form.

Example 2.1. (From classical mechanics).
• (Phase-space) (R2n, ωstd), where, writing (q, p) ∈ R2n = Rn⊕Rn (q =position, p =momenta),

we have
ωstd = −dλstd = dq ∧ dp,

where λstd = pdq is the standard Liouville form. Here we use the shorthand notation dq∧dp =∑n
i=1 dqi ∧ dpi and similarly pdq =

∑n
i=1 pidqi.

• (cotangent bundles) (T ∗Q,ωstd), where Q is a closed n-manifold, and ωstd is defined invari-
antly as

ωstd = −dλstd,
with

(λstd)(q,p)(η) = p(d(q,p)π(η)),

also called the standard Liouville form. Here, q is a point in the base, and p a covector in
TqQ

∗, and
π : T ∗Q→ Q

is the natural projection to the base. Note that phase-space corresponds to the caseQ = R2n.

A general important feature of symplectic manifolds (or, more like, the reason for their existence)
is that they are locally modelled on phase-space:

Theorem A (Darboux’s theorem for symplectic manifolds). If p ∈ (M,ω) is an arbitrary point in a
symplectic manifold, we can find local charts centered at p, so that (M,ω) is isomorphic to standard phase-
space (R2n, ωstd) in this local chart.

The notion of isomorphism we use above is the obvious one: two symplectic manifolds (M1, ω1)
and (M2, ω2) are symplectomorphic if there exists a diffeomorphism f : M1 → M2 satisfying f∗ω2 =
ω1. Darboux’s theorem is usually interpreted as saying that, unlike in Riemannian geometry where
the curvature is a local isometry invariant, there are no local invariants for symplectic manifolds
(they locally all look the same).



4 AGUSTIN MORENO

Hamiltonian dynamics. From a dynamical perspective, symplectic manifolds are the natural
geometric space where one can study Hamiltonian dynamics, via the Hamiltonian formalism. On a
cotangent bundle T ∗Q, the idea is to model the motion of a particle moving along the manifold Q,
subject to the principle of minimization of energy/action associated to a given physical problem.

In general, we start with a symplectic manifold (M,ω), and a Hamiltonian H : M → R, which is
simply a function (which we assume C1, say), thought of as the energy function of the mechanical
system. The symplectic form implicitly defines a vector field XH ∈ X(M) (the Hamiltonian vector
field or Hamiltonian gradient of H) via the equation

iXHω = dH.

Note that this uniquely defines XH due to non-degeneracy of ω. The above equation is the global,
invariant version for the following:

Exercise 2. (Fundamental example: Hamilton’s equation) Check that whenever (M,ω) = (R2n, ωstd),
we have

XH =

(
∂H

∂p
,−∂H

∂q

)
=
∂H

∂p
∂q −

∂H

∂q
∂p.

In other words, a solution x(t) = (q(t), p(t)) to the ODE ẋ(t) = XH(x(t)) is precisely a solution to
the Hamilton equations {

q̇ = ∂H
∂p

ṗ = −∂H∂q
By Darboux’s theorem, we see that, locally, solutions to the Hamiltonian flow are solutions to

the above.

Exercise 3. (Simple harmonic oscillator) Solve the Hamilton equations for the simple harmonic os-

cillator H : R2 → R, H(q, p) = p2

2m + mω2x2

2 , where ω =
√

k
m is the angular frequency, k is the

spring constant, m is the mass of a classical particle with position x and momenta p. Draw the
Hamiltonian orbits (i.e. the phase-space diagram).

Remark 2.2. The Hamiltonian usually also depends on time. We have assumed for simplicity that
it does not, i.e. it is autonomous. We will see that this will hold for the simplified versions of the
three body problem we will consider.

In the above symplectic formalism, it is a fairly straightforward matter to write down the funda-
mental conservation of energy principle (in the autonomous case):

Theorem B. (Conservation of energy) Assume H is autonomous. Then

dH(XH) = 0.

In other words, the level sets H−1(c) are invariant under the Hamiltonian flow.

This is also usually written down using the Poisson bracket as

{H,H} = 0,

which is another way of saying that H is preserved under the Hamiltonian flow of itself, or that H
is a conserved quantity (or integral) of the motion. The proof fits in one line:

dH(XH) = iXHω(XH) = ω(XH , XH) = 0,

since ω is skew-symmetric.
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2.2. Contact geometry. Contact geometry is, roughly speaking, the odd-dimensional analogue of
symplectic geometry, and arises on level sets of Hamiltonians satisfying a suitable convexity as-
sumption (see Prop. 2.5). Formally, a (strict) contact manifold is a pair (X,α), where X is a smooth
manifold with dim(X) = 2n − 1 odd, and α ∈ Ω1(X) is a 1-form (the contact form) satisfying the
contact condition:

α ∧ dαn−1 6= 0 is nowhere-vanishing, and hence a volume form.

Contact manifolds are therefore orientable (see Remark 2.4 below). The codimension-1 distribution
ξ = kerα ⊂ TM (a choice of hyperplane at each tangent space, varying smoothly with the point),
is called the contact structure or contact distribution, and (M, ξ) is a contact manifold.

Example 2.3.

• (standard) The standard contact form on R2n−1 = R⊕ Rn−1 ⊕ Rn−1 3 (z, q, p) is

αstd = dz − pdq,

where we again use the short-hand notation pdq =
∑n
i=1 pidqi.

• (First-jet bundles) Given a manifold Q, its first-jet bundle J1(Q) → Q, by definition, has
total space the collection of all possible first-derivatives of maps f : Q → R. The fiber over
q is as all possible tuples (q, f(q), dqf), and so J1(Q) ∼= R × T ∗Q. It carries the natural
contact form

α = dz + λstd,

where z is the coordinate on the first factor, and λstd is the standard Liouville form on T ∗Q;
note that the standard contact form corresponds to the case Q = Rn−1.

• (contactization) More generally: If (M,ω = dλ) is an exact symplectic manifold, then its
contactization is

(R×M,dz + λ),

where z is the coordinate in the first factor.

The contact condition should be thought of as a maximally non-integrability condition, as follows.
Recall the following theorem from differential geometry:

Theorem C (Frobenius’ theorem). If α ∧ dα ≡ 0, then ξ = kerα ⊂ TM is integrable. That is, there are
codimension-1 submanifolds whose tangent space is ξ.

The condition in Frobenius’ theorem is equivalent to dα|ξ ≡ 0. The contact condition is the
extreme opposite of the above: dα|ξ > 0 is symplectic, i.e. non-degenerate. In fact:

Exercise 4. If Y ⊂ (X, ξ) is a submanifold of a (2n−1)-dimensional contact manifold so that TY ⊂ ξ
(i.e. Y is isotropic), then dim(Y ) ≤ n− 1. The isotropic submanifolds of maximal dimension 2n− 1
are called Legendrians.

The analogous theorem of Darboux in the contact category is the following:

Theorem D (Darboux’s theorem for contact manifolds). If p ∈ (X,λ) is an arbitrary point in a strict
contact manifold, we can find a local chart U ∼= R2n−1 centered at p, so that λ|U = αstd.
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Reeb dynamics. Whereas a contact manifold is a geometric object, a strict contact manifold is
a dynamical one, as we shall see below. Note first that the choice of contact form for a contact
structure ξ is not unique: if α is such a choice, then να is also, for any smooth positive function
ν > 0. This is in fact the only ambiguity.

Given a contact form α, it defines an autonomous dynamical system onX , generated by the Reeb
vector field Rα ∈ X(X). This is defined implicitly via:

• iRαdα = 0;
• α(Rα) = 1.

To understand the above, note that, since dα|ξ is symplectic, the kernel of dα is the 1-dimensional
distribution TX/ξ ⊂ TX . This is trivialized (as a real line bundle) via a choice of contact form,
which also gives it an orientation induced from the one on M . The Reeb vector field then lies in
this 1-dimensional distribution; the second condition normalizes it so that it points precisely in
the positive direction with respect to the co-orientation. We emphasize that the Reeb vector field
depends significantly on the contact form, and not the contact structure; different choices give, in
general, very different dynamical systems.

Remark 2.4. There are also examples of contact manifolds which are not globally co-orientable (e.g.
the space of contact elements); we will not be concerned with those.

The Reeb flow ϕt has the property that it preserves the geometry in a strict way, i.e. it is a strict
contactomorphism. This means that ϕ∗tα = α, or in other words, the Reeb vector field generates
a (strict) local symmetry of the (strict) contact manifold. This fact easily follows from the Cartan
formula:

d

dt
ϕ∗tα = diRαα+ iRαdα = d(1) + 0 = 0,

and so ϕ∗tα = ϕ∗0α = α.
More generally, a (not necessarily strict) contactomorphism is a diffeomorphism f such that

f∗(ξ) = ξ, or f∗α = να for some strictly positive smooth function ν.

The bridge. The fundamental relationship between symplectic and contact geometry lies in the
following. If the symplectic form ω = dλ is exact (which can only happen if the symplectic manifold
is open, by Stokes’ theorem), then we have a Liouville vector field V , defined implicitly via

iV ω = λ,

where we again use non-degeneracy of ω. To understand this vector field, consider ϕt the flow of
V . The Cartan formula implies

d

dt
ϕ∗tω = diV ω + iV dω = dλ = ω,

and so, integrating, we get
ϕ∗tω = etω.

Taking the top wedge power of this equation: ϕ∗tωn = entωn, and we see that the symplectic volume
grows exponentially along the flow of V , i.e. ϕt is a symplectic dilation.

Assume that X ⊂ (M,ω = dλ) is a co-oriented codimension-1 submanifold, and the Liouville
vector field is positively transverse to X . Then we obtain a volume form on X contraction:

0 < iV ω
n|X = niV ω ∧ ωn−1|X = nλ ∧ dλn−1|X = α ∧ dαn−1,

where α = λ|X . We have proved:
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(M, ω=dα)

(X, α)=H (c)‐1
�(�)

V

X  = hR  αH  
FIGURE 1. The fundamental relationship between contact and symplectic geome-
try is summarized here.

Proposition 2.5. If ω = dλ, and the associated Liouville vector field V is positively transverse to X , then
(X,α = λ|X = iV ω|X) is a strict contact manifold.

A hypersurface X as in the above proposition is then called contact-type. The most relevant
example to keep in mind, is when X = H−1(c) is the level set of a Hamiltonian (in fact, locally this
is always the case). In this situation:

Proposition 2.6. If X = H−1(c) is contact-type, then the Reeb dynamics on X is a positive reparametriza-
tion of the Hamiltonian dynamics of H .

Exercise 5. Prove this proposition (this is an easy but important exercise).

In other words, Reeb dynamics on contact-type Hamiltonian level sets is dynamically equivalent to
Hamiltonian dynamics. See Figure 1 for an abstract sketch.

Example 2.7.
• (star-shaped domains) Assume thatX ⊂ R2n is star-shaped, i.e. it bounds a compact domain
D containing the origin, and the radial vector field V = q∂q + p∂p = ∂r is positively trans-
verse to X (with the boundary orientation). Since V is precisely the Liouville vector field
associated to λstd, every star-shaped domain is contact-type.

• (standard contact form on S3) As a particular case, let S3 = {z ∈ R4 : |z| = 1} ⊂ R4 be
the round 3-sphere. Then S3 = H−1(1/2), where H : R4 → R, H(z) = 1

2 |z|
2, and it is

star-shaped. Writing z = (z1, z2) = (x1, y1, x2, y2), the radial vector field

V =
1

2
r∂r =

1

2
(x1∂x1 + y1∂y1 + x2∂x2 + y2∂y2)

is Liouville and induces the contact form

α = iV ωstd|S3 = λstd|S3 =
1

2
(x1dy1 − y1dx1 + x2dy2 − y2dx2)|S3



8 AGUSTIN MORENO

on S3 whose Reeb vector field is

Rα = 2(x1∂y1 − y1∂x1
+ x2∂y2 − y2∂x2

).

Its Reeb flow is, in complex coordinates, ϕt(z1, z2) = e2πit(z1, z2), whose orbits are precisely
the fibers of the Hopf fibration S3 3 (z1, z2) 7→ [z1 : z2] ∈ CP 1. In particular, this flow is
periodic, and all orbits have the same period.

As a side remark: the Hopf fibration π : S3 → S2 = CP 1 is an example of what is usually
called a prequantization bundle, i.e. the contact form α is a connection form whose curvature
form on the base is symplectic. In other words, dα = iπ∗ωFS for a symplectic form ωFS on
S2, and its Reeb orbits are the S1-fibers (here, ωFS is the Fubini-Study metric on CP 1, and
the line bundle associated to the principal S1-bundle π is O(1) → CP 1; see the digression
on line bundles below).

• (ellipsoids) Given a, b > 0, define the ellipsoid

E(a, b) =

{
(z1, z2) ∈ C2 :

π|z1|2

a
+
π|z2|2

b
≤ 1

}
,

a star-shaped domain. The restriction of the symplectic form ωstd is a symplectic form on
E(a, b), and its boundary ∂E(a, b) inherits a contact form λstd|∂E(a,b) whose Reeb flow is

ϕt(z1, z2) = (e2πatz1, e
2πbtz2).

In particular, if a, b are rationally independent, then this Reeb flow has only two periodic
orbits, passing through the points z1 = 0, or z2 = 0. If a = b, E(a, a) is the unit ball, and we
recover the Hopf flow along the standard S3 = ∂E(a, a).

• (Unit cotangent bundle and geodesic flows) Given a manifold Q, choose a Riemannian
metric on TQ (which induces a metric on T ∗Q), and consider its unit cotangent bundle

S∗Q = {(q, p) ∈ T ∗Q : |p| = 1}.

We have S∗Q = H−1(1/2), where H : T ∗Q → R, H(q, p) = |p|2
2 is the kinetic energy

Hamiltonian. The radial vector field V = p∂p on each fiber is the Liouville vector field
associated to λstd, and is positively transverse to S∗Q. It follows that αstd := λstd|S∗Q is a
contact form, and (S∗Q, ξstd = kerαstd) is called the standard contact structure on S∗Q. Its
Reeb dynamics is the (co)geodesic flow. We see that a geodesic flow is a particular case of a Reeb
flow.

Exercise 6. (Hopf fibration) Check that the Reeb orbits of the standard contact form on S3 are indeed
the S1-fibers t 7→ eit(z1, z2) of the Hopf fibration S3 3 (z1, z2) 7→ [z1 : z2] ∈ CP 1, where we write
z1 = x1 + iy1, z2 = x2 + iy2.

Symplectization. Given a contact form α on X , its symplectization is the symplectic manifold

(R×X,ω = d(etα)).

The Liouville vector field is V = ∂t, which is positively transverse to all slices {t} × X , where it
induces the contact form iV ω = etα. Note that the Reeb dynamics is the same in each slice (i.e.
it is only rescaled by a constant positive multiple). In fact, the symplectization is the ”universal
neighbourhood” for every contact-type hypersurface:
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Proposition 2.8. Let X ⊂ (M,ω) be a contact-type hypersurface, with ω = dλ exact near X . Then we can
find sufficiently small ε > 0, and an embedding

Φ : (−ε, ε)×X ↪→M,

so that Φ∗ω = d(etα) where α = λ|X .

Exercise 7. Prove the proposition. Hint: use the Liouville flow.

In other words, contact manifolds are always contact-type in some symplectic manifolds, and
vice-versa. We can summarize this discussion in the following motto: contact geometry is R-invariant
symplectic geometry.

Remark 2.9. One also calls the symplectic manifold (R × X,ω = d(rα)) the symplectization of
α; this is related to the above by the obvious change of coordinates r = et. We shall use the two
interchangeably. Note that X = {t = 0} = {r = 1}.

Digression: examples of symplectic manifolds from complex algebraic/Kähler geometry.

Example 2.10.
• (Projective varieties) Complex projective space CPn admits a natural symplectic form, called

the Fubini-Study form ωFS , defined as follows. Let

K : Cn → R

K(z) = log

(
1 +

n∑
i=1

|zi|2
)
.

In homogeonous coordinates (ζ0 : · · · : ζn) for CPn, let Uα = {(ζ0 : · · · : ζn) : ζα 6= 0} and

ϕα : Uα → Cn,

ϕα(ζ0 : · · · : ζn) =

(
ζ0
ζi
, . . . ,

ζi−1
ζi

,
ζi+1

ζi
, . . . ,

ζn
ζi

)
= (zα1 , . . . , z

α
n )

be the standard affine chart around (0 : · · · : 1 : · · · : 0). Let Kα = K ◦ ϕα, and define

ωα =
√
−1∂∂Kα =

n∑
i,j=1

hij(z
α)dzαi ∧ dzαj .

Here, one computes

hij(z
α) =

δij
(
1 +

∑n
i=1 |zαi |2

)
− zαi zαj

(1 +
∑n
i=1 |zαi |2)

2

One checks that on overlaps Uα ∩ Uβ , we have ωα = ωβ , and so we get a well-defined
global ωFS so that ωFS |Uα = ωα. The Kα are what is called a local Kähler potential (or
plurisubharmonic function) for the Fubini-Study form. Every algebraic/analytic projective
variety inherits a symplectic form via restriction of the ambient Fubini-study form.

• (Affine varieties: Stein manifolds) The standard complex affine space Cn carries the stan-
dard symplectic form via the identification Cn = R2n, which in complex notation is

ωstd =

√
−1

2

n∑
i=1

dzi ∧ dzj =:

√
−1

2
dz ∧ dz = −dλstd



10 AGUSTIN MORENO

with λstd =
√
−1
4 (zdz − zdz). This admits the standard plurisubharmonic function

fstd(z) = |z|2,

i.e. ωstd =
√
−1∂∂fstd. This function is exhausting (i.e. {z : f(z) ≤ c} is compact for every

c ∈ R), and is a Morse function (with a unique critical point at the origin).
By analogy as with the projective case, a Stein manifold X is a properly embedded com-

plex submanifold of Cn, endowed with the restriction of the standard symplectic form, the
standard complex structure i, and the standard plurisubharmonic function. One may fur-
ther assume (after a small perturbation) that fstd defines a Morse function on X .

The above examples (projective and affine) are all instances of Kähler manifolds, i.e. the sym-
plectic form is suitably compatible with an integrable complex structure, and with a Riemannian
metric. One way to obtain Stein manifolds from projective varieties is to remove a collection of
generic hyperplane sections, i.e. the intersection of the variety with the zero sets of generic homo-
geneous polynomials of degree 1. A confusing point is that the Liouville form (i.e. the primitive
of the resulting symplectic form), depends on the number of sections, as we illustrate as follows in
the case of CPn as the projective variety.

Continued digression: relationship with line bundles, connections and Chern-Weil theory.
First, as a general fact, we recall that the Picard group of CPn (i.e. the group of isomorphism classes
of holomorphic line bundles, with tensor product as group operation) is isomorphic to Z, each
k ∈ Z corresponding to a line bundle O(k). For k ≥ 0, the holomorphic sections of O(k) are
precisely homogeneous polynomials of degree k on the homogeneous coordinates; O(k) has no
holomorphic sections for k < 0, but admits meromorphic sections given by Laurent polynomials
with poles of total order k. Moreover, the first Chern class of a line bundle is by definition the
Poincaré dual of Z(s), the zero set of a section s, generic in the sense that it is transverse to the zero
section. The zero set of a generic polynomial of degree k is, by definition, a hypersurface of degree
k. For very degenerate cases (i.e. when the polynomial factorizes into linear polynomials), this
consists of a collection of hyperplanes, i.e. zero sets of linear polynomials as e.g.H = {ζi = 0}, with
total multiplicity k. One should think of CP 1, where this zero set is simply a collection of points
with total multiplicity k. This translates to the fact that first Chern class of O(k) is c1(O(k)) =
kh ∈ H2(CPn,R), where h is the hyperplane class, the Poincaré dual to the homology class [H] ∈
H2n−2(CPn,R) of any hyperplane H , and a generator of the cohomology of CPn. On the other
hand, Chern-Weil theory says that c1 is represented by the curvature 2-form of a connection onO(k)
(e.g. the Chern connection associated to the standard Hermitian metric). In practice, this means the
following: for k ≥ 0, take a holomorphic section sk ∈ Γ(O(k)), and consider Fk =

√
−1∂∂log(|sk|2),

which a (1, 1)-form, defined on Xk := CPn\Z(sk). We further have Fk = −ddClog|sk|2, where dC

is defined via dCα(X) = dα(iX), and so Fk is exact on Xk. Moreover, it is symplectic on Xk,
which becomes a subset of Cn after choosing affine charts, and is in fact a Stein manifold, where
the appropiate Liouville form for the symplectic form Fk is λk = −dClog|sk|2. In other words,
projective space is obtained from Xk by compactifying with a divisor Z(sk) ”at infinity”. Thinking
of sk as providing a local trivialization of O(k) over Xk, one checks that different choices of local
trivializations give different Fk which glue together to a global (1, 1)-form which is no longer exact,
and actually its cohomology class is precisely c1(O(k)). Note that by construction, any standard
chart Uα is of the form CPn\Z(s1) ∼= Cn, and ωFS |Uα = F1, i.e. ωFS is the curvature of the Chern
connection on O(1) and hence Poincaré dual to h.
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S1

P

B

FIGURE 2. A neighbourhood of the binding look precisely like the pages of an
open book, whose front page has been glued to its back page.

Exercise 8 (Further reading). If unfamiliar with the above material, make sense of the above discus-
sion related to the examples coming from complex algebraic/Kähler geometry. Good references
are Griffiths-Harris [GH], Huybrechts [Huy05], and many others.

2.3. Open book decompositions.

Definition 2.11. Let M be a closed manifold. A (concrete) open book decomposition on M is a
fibration π : M\B → S1, where B ⊂M is a closed, codimension-2 submanifold with trivial normal
bundle. We further assume that π(b, r, θ) = θ along some collar neighbourhoodB×D2 ⊂M , where
(r, θ) are polar coordinates on the disk factor.

Note that collar neighbourhoods of B exist, since they are trivializations of its normal bundle.
B is called the binding, and the closure of the fibers Pθ = π−1(θ) are called the pages, which satisfy
∂Pθ = B for every θ. We usually denote a concrete open book by the pair (π,B). See Figure 2.

The above concrete notion also admits an abstract version, as follows. Given the data of a typical
page P (a manifold with boundary B), and a diffeomorphism ϕ : P → P with ϕ|B = id, we can
abstractly construct a manifold

M := OB(P,ϕ) := B × D2
⋃
∂

Pϕ,

where Pϕ = P × [0, 1]\(x, 0) ∼ (ϕ(x), 1) is the associated mapping torus. By gluing the obvious
fibration Pϕ → S1 with the angular map (b, r, θ) 7→ θ defined on B × D2, we see that this abstract
notion recovers the concrete one. Reciprocally, every concrete open book can also be recast in
abstract terms, where the choices are unique up to isotopy. However, while the two notions are
equivalent from a topological perspective, it is important to make distinctions between the abstract
and the concrete versions for instance when studying dynamical systems adapted to the open books
(as we shall do below), since dynamics is in general very sensitive to isotopies.
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S3

glue

glue

glue glue

glue glue

FIGURE 3. The disk-like pages of the trivial open book in S3 (above) are obtained
by gluing two foliations on two solid tori; similarly for its stabilized version (be-
low), whose pages are annuli. Here we use the genus 1 Heegaard splitting for
S3.

Example 2.12.
• (trivial open book) Since the relative mapping class group of D2 is trivial, the only possible

monodromy for an open book with disk-like pages is S3 = OB(D2,1). Viewing S3 =
{(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}, let B = {z1 = 0} ⊂ S3 be the binding (the unknot). The
concrete version is e.g. π : S3\B → S1, π(z1, z2) = z1

|z1| . See Figure 3.

• (stabilized version) We also have S3 = OB(D∗S1, τ), where τ is the positive Dehn twist
along the zero section S1 of the annulus D∗S1. A concrete version is π : S3\L → S1,
π(z1, z2) = z1z2

|z1z2| , where L = {z1z2 = 0} is the Hopf link. This is the positive stabilization
of the trivial open book, an operation which does not change the manifold (see below). See
Figure 3.

• (Milnor fibrations) More generally, let f : C2 → C be a polynomial which vanishes at the
origin, and has no singularity in S3 except perhaps the origin. Then πf : S3\Bf → S1,
πf (z1, z2) = f(z1,z2)

|f(z1,z2)| , Bf = {f(z1, z2) = 0} ∩ S3, is an open book for S3, called the Milnor
fibration of the hypersurface singularity (0, 0). The linkBf is the link of the singularity, and
the binding of the open book, whereas the page is called the Milnor fibre. If f has no critical
point at (0, 0), then Bf is necessarily the unknot.
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• We have S1 × S2 = OB(D∗S1,1). This can be easily seen by removing the north and south
poles of S2 (whose S1-fibers become the binding), and projecting the resulting manifold
D∗S1 × S1 to the second factor.

• (Some lens spaces) We have RP 3 = OB(D∗S1, τ2), as follows from taking the quotient
of the stabilized open book in S3 via the double cover S3 → RP 3. More generally, for
p ≥ 1, we have L(p, p − 1) = OB(D∗S1, τp), and for p ≤ 0, L(p, 1) = OB(D∗S1, τp). Here,
L(p, q) = S3/Zp, is the lens space, where the generator ζ = e

2πi
p ∈ Zp acts via ζ · (z1, z2) =

(ζ.z1, ζ
q.z2). For p = 0, 1, 2, we recover the above examples.

Exercise 9. Prove the above claims: L(p, p− 1) = OB(D∗S1, τp) for p ≥ 1, L(p, 1) = OB(D∗S1, τp),
for p ≤ 0. Try not to get confused with orientations (we have L(p, p−1) = −L(p, 1)). The discussion
below on Heegaard splittings helps.

In general, we have the following important result from smooth topology, which says that the
open book construction achieves all closed, odd-dimensional manifolds:

Theorem E (Alexander (dim = 3), Wilkelnkemper (simply-connected, dim ≥ 7), Lawson (dim ≥ 7),
Quinn (dim ≥ 5)). If M is closed and odd-dimensional, then M admits an open book decomposition.

So far, we have discussed open books in terms of smooth topology. We now tie it with con-
tact geometry, via the fundamental work of Emmanuel Giroux, which basically shows that contact
manifolds can be studied from a purely topological perspective. One therefore usually speaks of
the field contact topology, when the object of study is the contact manifold itself (as opposed e.g. to
a Reeb dynamical system on the contact manifold).

If M is oriented and endowed with an open book decomposition, then the natural orientation
on the circle induces an orientation on the pages, which in turn induce the boundary orientation
on the binding. The fundamental notion is the following:

Definition 2.13 (Giroux). Let (M, ξ) be an oriented contact manifold, and (π,B) an open book
decomposition on M . Then ξ is supported by the open book if one can find a positive contact form
α for ξ (called a Giroux form) such that:

(1) αB := α|B is a positive contact form for B;
(2) dα|P is a positive symplectic form on the interior of every page P .

Here, the a priori orientations on binding and pages are the ones described above.

The above conditions are equivalent to:
(1)’ Rα|B is tangent to B;
(2)’ Rα is positively transverse to the interior of every page.
In the above situation, (B, ξB = kerαB) is a codimension-2 contact submanifold, i.e. ξB = ξ|B .

Theorem F (Giroux). Every open book decomposition supports a unique isotopy class of contact structures.
Any contact structure admits a supporting open book decomposition.

Here, two contact structures are isotopic if they can be joined by a smooth path ξt of contact struc-
tures. An important result in contact geometry is Gray’s stability, which says that isotopic contact
structures are contactomorphic, i.e. there exists a diffeomorphism which carries one to the other. One
may further assume that the pages in the above theorem are Stein manifolds, as discussed above.
One may unequivocally use OB(P,ϕ) to denote the unique isotopy class of contact structures that
this open book supports.
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Giroux’s result is actually much stronger in dimension 3, since it moreover states that the sup-
porting open book is unique up to a suitable notion of positive stabilization, which can be thought of
as two cancelling surgeries which therefore smoothly do not change the ambient manifold:

Theorem G (Giroux’s correspondence). If dim(M) = 3, there is a 1:1 correspondence

{contact structures}/isotopy←→ {open books}/pos. stabilization

This bijection is why in dimension 3 one talks about Giroux’s correspondence, which reduces
the study of contact 3-manifolds to the topological study of open books. The analogous general
uniqueness statement in higher-dimensions is an open question to this day. Let us emphasize that
in the above result only the contact structure is fixed, and the contact form (and hence the dynamics)
is auxiliary; Giroux’s result is not dynamical, but rather topological/geometrical.

2.4. Global hypersurfaces of section. From a dynamical point of view, one wishes to adapt the
underlying topology to the given dynamics, rather than vice-versa. We therefore make the follow-
ing:

Definition 2.14. Given a flow ϕt : M → M of an autonomous vector field on an odd-dimensional
closed manifoldM carrying a concrete open book decomposition (π,B), we say that the open book
is adapted to the dynamics if:

• B is ϕt-invariant;
• for each x ∈M\B and P a page, then the orbit of x intersects the interior of P in the future,

and in the past, i.e. there exists τ+(x) > 0 and τ−(x) < 0 such that ϕτ±(x) ∈ int(P ).

If ϕt is a Reeb flow, then the above is equivalent to asking that the (given) contact form is a
Giroux form for the (auxiliary) open book. It follows from the definition, that each page is a global
hypersurface of section, defined as follows:

Definition 2.15. (Global hypersurface of section) A global hypersurface of section for an autonomous
flow ϕt on a manifold M is a codimension-1 submanifold P ⊂M , whose boundary (if non-empty)
is flow-invariant, and the orbit of every point in M\∂P intersects the interior of P in the future and
past.

Poincaré return map. Given a global hypersurface of section P for a flow ϕt, this induces a
Poincaré return map, defined as

f : int(P )→ int(P ), f(x) = ϕτ(x)(x),

where τ(x) = min{t > 0 : ϕt(x) ∈ int(P )}. This is clearly a diffeomorphism. And, by construction,
periodic points of f (i.e. points p for which fk(p) = p for some k ≥ 1) are in 1:1 correspondence
with closed spatial orbits (those which are not fully contained in the binding).

Moreover, in the case of a Reeb dynamics we have:

Proposition 2.16. If ϕt is the Reeb flow of a contact form α, and P is a global hypersurface of section with
induced return map f , then ω = dα|P = dλ, with λ = α|P , is a symplectic form on P , and

f : (P, ω)→ (P, ω)

is a symplectomorphism, i.e. f∗ω = ω.
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In fact, f is an exact symplectomorphism, which means that f∗λ = λ + dτ for some smooth
function τ (i.e. the return time). Differentiating this equation, we obtain f∗ω = ω. In dimension 2, a
symplectic form is just an area form, and so the above proposition simply says that the return map
is area-preserving.

The proof is quite simple: ω is symplectic precisely because the Reeb vector field (which spans
the kernel of dα) is transverse to P . For x ∈ int(P ), v ∈ TxP , we have

dxf(v) = dxτ(v)Rα(f(x)) + dxϕτ(x)(v).

Using that ϕt satisfies ϕ∗tα = α, we obtain

(f∗λ)x(v) = αf(x)(dxf(v))

= dxτ(v) + (ϕ∗τ(x)α)x(v)

= dxτ(v) + λx(v).

(2.1)

Therefore
f∗λ = dτ + λ, (2.2)

which proves the proposition.

Remark 2.17. In general, the return map might not necessarily extend to the boundary, and indeed
there are many examples on which this doesn’t hold; this is a delicate issue which usually relies on
analyzing the linearized flow equation along the normal direction to the boundary.

2.5. Examples of adapted dynamics. Let us discuss two important but simple examples of open
books supporting a Reeb dynamics.

Hopf flow. The trivial open book on S3, as well as its stabilized version, are both adapted to the
Hopf flow.

Exercise 10. Prove this claim.

Exercise 11. More generally, prove that the trivial and stabilized open books on S3 are adapted to
the Reeb dynamics of every ellipsoid E(a, b). Show that, in the trivial case, the return map on each
page is the rotation by angle 2π ab ; and in the stabilized case, we get a map of the annulus which
rotates the two boundary components in the same direction (i.e. it is not a twist map). Interpret
the dynamics in terms of the fixed points of these return maps (or lack thereof), and relate this
phenomenon to the classical Brouwer fixed point theorem, and the Poincaré-Birkhoff theorem, as
discussed below.

2.6. Geodesic flow on Sn, and the geodesic open book. We write

T ∗Sn =
{

(ξ, η) ∈ T ∗Rn+1 = Rn+1 ⊕ Rn+1 : ‖ξ‖ = 1, 〈ξ, η〉 = 0
}
.

The Hamiltonian for the geodesic flow is Q = 1
2‖η‖

2|T∗Sn with Hamiltonian vector field

XQ = η · ∂ξ − ξ · ∂η.

This is the Reeb vector field of the standard Liouville form λstd on the energy hypersurface Σ =
Q−1( 1

2 ) = S∗Sn. We have the invariant set

B := {(ξ0, . . . , ξn; η0, . . . , ηn) ∈ Σ | ξn = ηn = 0} = S∗Sn−1.
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FIGURE 4. The geodesic open book for S∗Sn.

Define the circle-valued map

πg : Σ \B −→ S1, (ξ0, . . . , ξn; η0, . . . , ηn) 7−→ ηn + iξn
‖ηn + iξn‖

.

This is a concrete open book on S∗Sn, which we shall refer to as the geodesic open book. The page
ξn = 0 and ηn > 0, i.e. the fiber over 1 ∈ S1, corresponds to a higher-dimensional version of the
famous Birkhoff annulus (when n = 2), and is a copy of D∗Sn−1. Indeed, it consists of those (co)-
vectors whose basepoint lies in the equator, and which point upwards to the upper-hemisphere.
See Figure 4.

We then consider the angular form

ωg = dπg =
ηndξn − ξndηn

ξ2n + η2n
.

We see that ωg(XQ) = 1 > 0, away fromB. This means that (B, πg) is a supporting open book for Σ
and the pages of πg are global hypersurfaces of section for XQ. In fact, all of its pages are obtained
from the Birkhoff annulus by flowing with the geodesic flow. In terms of the contact structure ξstd =
kerλstd, this open book corresponds to the abstract open book (S∗Sn, ξstd) = OB(D∗Sn−1, τ2)
supporting ξstd. Here, τ : D∗Sn−1 → D∗Sn−1 is an exact symplectomorphism defined by Arnold
in dimension 4 in [A95] and extended by Seidel to higher-dimensions (see e.g. [Sei00]), and is a
generalization of the classical Dehn twist on the annulus. For n = 2, we reobtain the open book
RP 3 = S∗S2 = OB(D∗S1, τ2).

2.7. Double cover of S∗S2. We focus on n = 2, and consider

S∗S2 = {(ξ, η) ∈ T ∗R3 : ‖ξ‖ = 1, 〈ξ, η〉 = 0},

the unit cotangent bundle of S2, with canonical projection π0 : S∗S2 → S2, π0(ξ, η) = ξ. It is easy
to see that the map

Φ : S∗S2 → SO(3),
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Φ(ξ, η) = (ξ, η, ξ × η),

is a diffeomorphism, where we view ξ, η as column vectors, and so S∗S2 ∼= SO(3) ∼= RP 3. The
projection π0 on SO(3) becomes π0(A) = A(e1), i.e. the first column of the matrix A ∈ SO(3). We
have π1(S∗S2) = Z2, generated by the S1-fiber. By definition, the double cover of SO(3) is the Spin
group Spin(3), which can be constructed as follows. Consider the quaternions

H = {a+ bi+ cj + dk : a, b, c, d ∈ R},

with i2 = j2 = k2 = −1, ij = k, jk = i, ki = j. We identify S3 = Sp(1) := {q ∈ H : ‖q‖ = 1}, and
R3 = Im(H) = 〈i, j, k〉 the set of purely imaginary quaternions. The conjugate of q = a+bi+cj+dk
is q = a− bi− cj − dk. We then define

p : S3 → SO(3),

p(q)(v) = qvq,

where v ∈ Im(H) = R3. We have ‖qvq‖ = ‖q‖2‖v‖ = ‖v‖, and p(q) is seen to preserve orientation,
so indeed p(q) ∈ SO(3). Clearly p(−q) = p(q), and the map p is in fact a double cover, so that
S3 = Spin(3).

Identifying i with e1, we have π0(p(q)) = p(q)(i) = qiq. A short computation gives

qiq = (a+ bi+ cj + dk)∗i(a+ bi+ cj + dk) = (a2 + b2 − c2 − d2)i+ 2(bc− ad)j + 2(ac+ bd)k.

On the other hand, the Hopf map may be defined as the map

π : S3 → S2, π(z1, z2) = (|z1|2 − |z2|2, 2Rez1z2, 2Imz1z2),

where we view S3 = {(z1, z2) ∈ C2; |z1|2 + |z2|2 = 1} and S2 ⊂ R3. Writing q = a+ bi+ cj + dk =
z1 + z2j, i.e. z1 = a+ ib, z2 = c+ id, one can easily check that

(|z1|2 − |z2|2, 2Rez1z2, 2Imz1z2) = (a2 + b2 − c2 − d2, 2(bc− ad), 2(ac+ bd)).

We have proved the following:

Proposition 2.18. The Hopf fibration is the fiber-wise double cover of the canonical projection π0, i.e. we
have a commutative diagram

S1 S1

S3 = Spin(3) SO(3) = S∗S2

S2 S2

z 7→z2

p

π π0
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2.8. Magnetic flows and quaternionic symmetry. On this section, we expose the beautiful con-
struction of [AGZ] (to which we refer the reader for further details here omitted), relating the
quaternions with Reeb flows on S3, as double covers of magnetic flows on S∗S2.

On S2, consider an area form σ (the magnetic field), and the twisted symplectic form ωσ , defined
on T ∗S2 via

ωσ = ωstd − π∗0σ,
where π0 : T ∗S2 → S2 is the natural projection. Fixing a metric g on S2, the Hamiltonian flow of
the kinetic Hamiltonian H(q, p) = ‖p‖2

2 , computed with respect to ωσ , is called the magnetic flow of
(g, σ). Note that σ = 0 corresponds to the geodesic flow of g. Physically, the magnetic flow models
the motion of a particle on S2 subject to a magnetic field (the terminology comes from Maxwell’s
equations, which can be recast in this language). From now on, we fix σ to be the standard area
form on S2, with total area 4π, and g the standard metric with constant Gaussian curvature 1.

On S∗S2, we can choose a connection 1-form α satisfying dα = π∗σ, which is a contact form
(usually called a prequantization form). We identify T ∗S2\S2 with R+ × S∗S2, and denoting by
r ∈ R+ the radial coordinate, we have the associated symplectization form d(rα). Consider the
S1-family of symplectic forms

ωθ = cos θ d(rα) + sin θ d(rαstd), θ ∈ R/2πZ,

defined on R+ × S∗S2 = T ∗S2\S2, where d(rαstd) = ωstd. The Hamiltonian flow of the kinetic
Hamiltonian H , with respect to ωθ, and along r = 1, is easily seen to be the magnetic flow of
(g,− cot θ · σ) up to constant reparametrization. In particular, for θ = π/2 mod π, we obtain the
geodesic flow, whose orbits are great circles; for other values of θ the strength of the magnetic field
increases, and the orbits become circles of smaller radius with an increasing left drift. For θ =
0 mod π, the circles become points and the flow rotates the fibers of S∗S2, i.e. this is the magnetic
flow with ”infinite” magnetic field.

We now construct the double covers of these magnetic flows on S3, using the hyperkähler struc-
ture on H = R4 = C2. We view S3 as the unit sphere in H. Every unit vector

c = c1i+ c2j + c2k ∈ S2 ⊂ R3

may be viewed as a complex structure on H, i.e. c2 = −1. Denoting the radial coordinate on R4 by
r, we obtain an S2-family of contact forms on S3 given by

αc = −2dr ◦ c|TS2 , c ∈ S2.

The Reeb vector field of αc is Rc = 1
2c∂r. Note that αi is the standard contact form on S3, whose

Reeb orbits are the Hopf fibers.
We then consider the quaternionic action of S3 on itself, given by

la : S3 → S3

u 7→ au,

for a ∈ S3. Recall that we also have the action of S3 on S2 via the SO(3)-action of the previous
section, i.e. a ·c = p(a)(c) = aca ∈ S2, for a ∈ S3, c ∈ S2, and p : S3 → SO(3) the Spin group double
cover. One checks directly that (la)∗αc = αaca = αa·c. In particular, (la)∗αi = απ(a), where π is the
Hopf fibration.

On the other hand, the stabilizer of i ∈ S2 under the S3-action is the circle

Stab(i) = {cos(ϕ) + i sin(ϕ) : ϕ ∈ S1} ∼= S1 ⊂ S3.
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The action of an element in this subgroup on S3 then fixes αi, but reparametrizes its Reeb orbits,
i.e. rotates the Hopf fibers. We then consider an S1-subgroup {aθ} ⊂ S3 of unit quaternions which
are transverse to this stabilizer, intersecting it only at the identity, given by

aθ = cos(θ/2) + k sin(θ/2), θ ∈ [0, π]

for which
π(aθ) = aθiaθ = i cos θ + j sin θ.

Define
αθ := απ(aθ) = cos θ αi + sin θ αj ,

with Reeb vector field Rθ := Rπ(aθ). One further checks that

αθ = p∗(cos θ α+ sin θ αstd),

and so
ω̃θ := dαθ = p∗ωθ|S∗S2

is the double cover of the twisted symplectic form ωθ along the unit cotangent bundle (alternatively,
we can also think of ω̃θ as being defined on R4\{0} = R+ × S3 as the symplectization of αθ). We
have obtained:

Theorem H. [AGZ] There are contact forms αi, αj and an S1-action on S3, sending αi to contact forms
αθ = cos θ αi + sin θ αj , θ ∈ S1, such that the Reeb flow of αθ doubly covers the magnetic flow of ωθ.

Remark 2.19. Note that for θ = 0, corresponding to the infinite magnetic flow, this reduces to the
statement of Prop. 2.18. For θ = π/2, this says that we can lift the geodesic flow on S2 to (a rotated
version of) the Hopf flow. Of course, this statement depends on choices; we could have arranged
that the lift is precisely the Hopf flow by changing our choice of coordinates.

2.9. The magnetic open book decompositions. We now tie the previous discussion with open
book decompositions. We have seen that the geodesic open book on S∗S2 is constructed in such
a way that it is adapted to the geodesic flow of the round metric. On the other hand, by consid-
ering the action on S3 of the subgroup {aθ} ⊂ S3 of the previous section, we obtain an S1-family
{pθ : S3\aθ(L) → S1} of open book decompositions on S3 (here, L is the Hopf link). These are
respectively adapted to the Reeb dynamics of αθ, and start from the stabilized open book p0 on S3

(adapted to αi by Ex. 10 above); they are all just rotations of each other.
Note that Prop. 2.18, the push-forward of p0 under the Hopf map, i.e. p0 := π∗(p0) = p0 ◦ π−1 :

S∗S2\B0 → S1 where B0 is the disjoint union of the unit cotangent fibers over the north and south
poles N,S in S2 (i.e. the image of the Hopf link under π), is adapted to the infinite magnetic flow.
The pages are cylinders obtained as follows: S∗S2\B0

∼= ((−1, 1)×S1)×S1 is a trivial bundle over
S2\{N,S} ∼= (−1, 1)× S1 (the Euler class of S∗S2 is −2), and p0 is the trivial fibration.

The push-forward pθ = π∗(pθ) : S∗S2\Bθ → S1 is then an open book decomposition on S∗S2,
which coincides with the geodesic open book at θ = π. The binding Bθ consists of two magnetic
geodesics for ωθ; see Figure 5. We call any element of the family {pθ}, a magnetic open book decompo-
sition.

Digression: open books and Heegaard splittings. A 3-dimensional genus g (orientable) han-
dlebody Hg is the 3-manifold with boundary resulting by taking the boundary connected sum of
g-copies of the solid 2-torus S1 × D2 (here, we set H0 = B3 the 3-ball). Hg can also be obtained by
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θ

θ/2

θ=0

θ=π

FIGURE 5. The binding of the magnetic open book pθ (in red), consisting of two
circles of latitude θ and π − θ, doubly covered by two Reeb orbits of αθ. At θ = π
the action of aπ maps the Hopf fiber over a point to the Hopf fiber over its antipodal
(cf. [AGZ, Fig. 1]).

attaching a sequence of g 1-handles to B3. Its boundary is Σg , the orientable surface of genus g. A
Heegaard splitting of genus g of a closed 3-manifold X is a decomposition

X = Hg

⋃
f

H ′g,

where f : Σg = ∂Hg → Σg = ∂H ′g is a homeomorphism of the boundary of two copies of Hg .
The surface Σg is called the splitting surface. Different choices of f in the mapping class group of
Σg give, in general, different 3-manifolds. In fact, it is a fundamental theorem of 3-dimensional
topology that every closed 3-manifold admits a Heegaard splitting. We have also touched upon
another structural result for 3-manifolds: namely, that every closed 3-manifold admits an open
book decomposition. Let us then discuss how to induce a Heegaard splitting from an open book.

Starting from a concrete open book decomposition M\B → S1 = R/Z of abstract type M =
OB(P,ϕ), we obtain a Heegaard splitting via

Hg = π−1([0, 1/2]) ∪B, H ′g = π−1([1/2, 1]) ∪B,

where the splitting surface Σg = P0 ∪B P1/2 is the double of the page P0 = π−1(0), obtained by
gluing P0 to its ”opposite” P1/2 = π−1(1/2). The gluing map f is simply given by ϕ on P0, and the
identity on P1/2. Stabilizing the open book translates into a stabilization of the Heegaard splitting.

This shows that the Heegaard diagram thus induced is rather special, since the gluing map is
trivial on ”half” of the splitting surface. In fact, not every Heegaard splitting arises this way, as is
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FIGURE 6. The Lefschetz fibration LF(P, τpτq) over D2.

easy to see (e.g. the lens spaces are precisely the 3-manifolds with Heegaard splittings of genus 1,
but only the lens spaces discussed in Example 2.12 arise from an open book with annulus page,
since its relative mapping class group is generated by the Dehn twist).

Digression: open books and Lefschetz fibrations/pencils. We now explore some further inter-
play between symplectic and algebraic geometry.

Definition 2.20 (Lefschetz fibration). Let M be a compact, connected, oriented, smooth 4-manifold
with boundary. A Lefschetz fibration on M is a smooth map π : M → S, where S is a compact,
connected, oriented surface with boundary, such that each critical point p of π lies in the interior of
M and has a local complex coordinate chart (z1, z2) ∈ C2 centered at p (and compatible with the
orientation ofM ), together with a local complex coordinate z near π(p), such that π(z1, z2) = z21 +z22
in this chart.

In other words, each critical point has a local (complex) Morse chart, and is therefore non-
degenerate. We then have finitely many critical points due to compactness of M . One may also
(up to perturbation of π) assume that there is a single critical point on each fiber of π. The regular
fibers are connected oriented surfaces with boundary, whereas the singular fibers are immersed
oriented surfaces with a transverse self-intersection (or node). This singularity is obtained from
nearby fibers by pinching a closed curve (the vanishing cycle) to a point. See Figure 6.

The boundary of a Lefschetz fibration splits into two pieces:

∂M = ∂hM ∪ ∂vM,
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where
∂hM =

⋃
b∈S

∂π−1(b), ∂vM = π−1(∂B).

By construction, ∂hM is a circle fibration over S, and ∂vM is a surface fibration over ∂S. If we focus
on the case S = D2, the two-disk, denoting the regular fiber P and B = ∂P , we necessarily have
that ∂hM is trivial as a fibration, and ∂vM is the mapping torus Pφ of some monodromy φ : P → P .
Therefore

∂M = ∂hM ∪ ∂vM = B × D2
⋃
Pφ = OB(P, φ).

Now, the monodromy φ is not arbitrary, since orientations here play a crucial role. While every
element in the symplectic mapping class group of a surface is a product of powers of Dehn twists
along some simple closed loops, it turns out that φ is necessarily a product of positive powers of
Dehn twists (once orientations are all fixed). In fact, φ =

∏
p∈crit(π) τp, where τp = τVp is the

positive (or right-handed) Dehn twist along the corresponding vanishing cycle Vp ∼= S1 ⊂ P . This
can be algebraically encoded via the monodromy representation

ρ : π1(D2\critv(π))→MCG(P, ∂P ),

where critv(π) = {x1, . . . , xn}, xi = π(pi), is the finite set of critical values of π. We have

π1(D2\{x1, . . . , xn}) = 〈g∂ , g1, . . . , gn : g∂ =

n∏
i=1

gi〉,

where gi is a small loop around xi and g∂ = ∂D2, and ρ is defined via ρ(gi) = τVpi .

Exercise 12. Show that the monodromy of the local model π : C2 → C, π(z1, z2) = z21 + z22 , viewed
as a Lefschetz fibration with fiber the cylinder T ∗S1, is precisely the positive Dehn twist along the
zero section S1 ⊂ T ∗S1. Deduce that the monodromy representation behaves as claimed, for a
general Lefschetz fibration. See Figure 7.

Reciprocally, a 4-dimensional Lefschetz fibration on M over D2 is abstractly determined by the
data of the regular fiber P (a surface with non-empty boundary) and a collection of simple closed
loops V1, . . . , Vn ⊂ P . This determines a monodromy φ =

∏n
i=1 τVi , a product of positive Dehn

twists along the vanishing cycles Vi. The recipe to construct M works as follows: decompose
P = D2

⋃
H1 ∪ · · · ∪ Hk into a handle decomposition with a single 0-handle D2 and a collection

of 2-dimensional 1-handles H1, . . . ,Hk
∼= D1 × D1. One starts with the trivial Lefschetz fibration

M0 = D2 × D2 → D2 with disk fiber; and then one attaches (thickened) 4-dimensional 1-handles
Hi × D2 to M0 to obtain the trivial Lefschetz fibration M1 = P × D2 → D2 with fiber P . In order
to add the singularities, one attaches one 4-dimensional 2-handle H = D2 × D2 along Vi ⊂ P ×
{1} ⊂ ∂M1, viewed as the attaching sphere Vi = S1 × {0} ⊂ S1 × D2 ⊂ ∂H . At each step of
the 2-handle attachments, we obtain a fibration with monodromy representation ρi extending ρi−1
and satisfying ρi(gi) = τVi , starting from the trivial representation ρ0 = 1 : π1(D2) = {1} →
MCG(P, ∂P ). We denote the resulting manifold as M = LF(P, φ), for which we have a handle
description with handles of index 0, 1, 2.

Remark 2.21. The notation LF(P, φ), although simple, is a bit misleading: we need to remember the
factorization of φ, since different factorizations lead in general to different smooth 4-manifolds. One
should perhaps use LF(P ;V1, . . . , Vn) instead, although we hope this will not lead to confusion.

Having said that, we summarize this discussion in the following:
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FIGURE 7. The local model for a Lefschetz singularity.

Lemma 2.22 (Relationship between Lefschetz fibrations and open books). We have

∂LF(P, φ) = OB(P, φ),

for φ =
∏n
i=1 τVi a product of positive Dehn twists along a collection of vanishing cycles V1, . . . , Vn in P .

While so far this has been a discussion in the smooth category, one may upgrade this to the
symplectic/contact category. While we have seen that open books support contact structures in
the sense of Giroux, Lefschetz fibrations also support symplectic structures. This is encoded in the
following:

Definition 2.23 (Symplectic Lefschetz fibrations). An (exact) symplectic Lefschetz fibration on an
exact symplectic 4-manifold (M,ω = dλ) is a Lefschetz fibration π for which the vertical and hori-
zontal boundary are convex, and the fibers π−1(b) are symplectic with respect to ω, also with convex
boundary.

Here, convexity means that the Liouville vector field is outwards pointing. Note that, by Stokes’s
theorem and exactness of ω, a symplectic Lefschetz fibration cannot have contractible vanishing cy-
cles, since otherwise there would be a non-constant symplectic sphere in a fiber. The description of
Lefschetz fibrations in terms of handle attachments can also be upgraded to the sympectic category
via the notion of a Weinstein handle. After smoothing out the corner ∂hM ∩ ∂vM , the boundary ∂M
becomes contact-type via α = λ|∂M , and the contact structure ξ = kerα is supported by the open
book at the boundary. The contact manifold (∂M, ξ) is said to be symplectically filled by (M,ω) (see
the discussion below on symplectic fillings of contact manifolds).

Since the space of symplectic forms on a two-manifold is convex and hence contractible, one
can show that, given the Lefschetz fibration LF(P, φ), an adapted symplectic form (i.e. as in the
definition above) exists and is unique up to symplectic deformation. Therefore, similarly as in
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FIGURE 8. The standard Lefschetz fibration on D∗S2 = LF(D∗S1, τ2), where τ
is the Dehn twist along the zero section S1 ⊂ D∗S1. In the picture above, we
draw T ∗S2, and the fibers on D∗S2 are obtained by projecting along the Liouville
direction. These are drawn in the picture below. The two critical points induce the
monodromy τ2.

Giroux’s correspondence, one can talk about LF(P, φ) as a symplectomorphism class of symplectic
manifolds.
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Example 2.24. An example which is relevant for the spatial CR3BP is that of T ∗S2. We consider the
Brieskorn variety

Vε = {(z0, . . . , zn) ∈ Cn+1 :

n∑
j=0

z2j = ε},

and the associated Brieskorn manifold Σε = Vε ∩ S2n+1. If ε = 0, V0 has an isolated singularity at
the origin, and Σ0 is called the link of the singularity. For ε 6= 0, the domain V cptε = Vε ∩ B2n+2

is a smooth manifold, with boundary Σε ∼= Σ0; the manifold Vε also inherits a symplectic form
by restriction of ωstd on Cn+1. Similarly, Σε inherits a contact form by restriction of the standard
contact form αstd = i

∑
j zjdzj − zjdzj . In fact, Vε is a Stein manifold, and V cptε is a Stein filling of

Σε; see the discussion on Stein manifolds above, and fillings below.

Exercise 13. Prove that the map

(V1, ωstd)→ (T ∗Sn ⊂ T ∗Rn+1, ωcan), z = q + ip 7→ (‖q‖−1q, ‖q‖p)
is a symplectomorphism, which restricts to a contactomorphism

(Σ0, αstd)→ (S∗Sn ⊂ T ∗Rn+1, λcan).

The standard Lefschetz fibration on T ∗Sn can be obtained from the Brieskorn variety model as

V1 → C, (z0, . . . , zn) 7→ z0.

This induces the geodesic open book on S∗Sn at the boundary, given by the same formula.

Exercise 14. Prove, at least for n = 2, that the above map induces the Lefschetz fibration T ∗S2 =
LF(T ∗S1, τ2), where τ is the Dehn twist along the vanishing cycle S1 ⊂ T ∗S1, the zero section.
Conclude that S∗S2 = RP 3 = OB(D∗S1, τ2). See Figure 8.

To tie the above discussion with classical algebraic geometry, we introduce the following notion
(in the closed case):

Definition 2.25 (Lefschetz pencil). Let M be a closed, connected, oriented, smooth 4-manifold. A
Lefschetz pencil on M is a Lefschetz fibration π : M\L → CP 1,where L ⊂ M is a finite collection
of points, such that near each base point p ∈ L there exists a complex coordinate chart (z1, z2) in
which π looks like the Hopf map π(z1, z2) = [z1 : z2].

Lefschetz pencils arise naturally in the study of projective varieties, and linear systems of line
bundles over them. The basic construction is the following: Consider two distinct homogeneous
polynomials F (x, y, z), G(x, y, z) of degree d in projective coordinates [x : y : z] ∈ CP 2 (i.e. sections
of the holomorphic line bundle O(d)), generic in the sense that V (F ) = {F = 0} and V (G) = {G =

0} are smooth degree d curves, of genus g = (d−1)(d−2)
2 by the genus-degree formula, and so that

the base locus V (F ) ∩ V (G) = L consists of a collection of d2 distinct points (by Bézout’s theorem).
Consider the degree d pencil {C[λ:µ]}[λ:µ]∈CP 1 , where

C[λ:µ] = V (λF + µG) ⊂ CP 2.

Through any point in CP 2\L, there is a unique C[λ:µ] which contains it. We then have a Lefschetz
pencil

π : CP 2\L→ CP 1,

where π([x : y : z]) = [λ : µ] if C[λ:µ] is the unique degree d curve in the family passing through
[x : y : z].
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CP2

FIGURE 9. A cartoon of a pencil of cubics, where L consists of 9 points, and each
fiber has genus 1.

By construction, every curve in the pencil meets at the d2 points in L. One can further perform
a complex blow-up along each of these points, by adding an exceptional divisor (a copy of CP 1) of
all possible incoming directions at a given point, and the result is a Lefschetz fibration

BlLπ : BlLCP 2 → CP 1.

By construction, this Lefschetz fibration has plenty of spheres, i.e. the exceptional divisors, which
are sections of the fibration.

The above construction also extends to the case of closed 4-dimensional projective varieties in
some ambient projective space. Moreover, as we have already mentioned, projective varieties are
Kähler, and in particular symplectic. It is a very deep fact that the above construction extends
beyond the algebraic case to the general case of all closed symplectic 4-manifolds:

Theorem I (Donaldson). Any closed symplectic 4-manifold (M,ω) admits Lefschetz pencils with sym-
plectic fibers. In fact, if [ω] ∈ H2(M ;Z) is integral, the fibers are Poincaré dual to k[ω] for some sufficiently
large k � 0.

The above implies that techniques from algebraic geometry can also be applied in the symplectic
category, and the interplay is very rich. From the above discussion, after blowing up a finite number
of points on the given closed symplectic 4-manifold (M,ω), we obtain a Lefschetz fibration.

Digression: symplectic cobordisms and fillings. We have already seen the fundamental rela-
tionship between contact and symplectic geometry. We now touch upon this a bit further.
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Definition 2.26 (Symplectic cobordism). A (strong) symplectic cobordism from a closed contact
manifold (X−, ξ−) to a closed contact manifold (X+, ξ−) is a compact symplectic manifold (M,ω)
satisfying:

• ∂M = X+

⊔
X−;

• ω = dλ± is exact near X±, and the (local) Liouville vector field V± (defined via iV±ω = λ±)
is inwards pointing along X− and outwards pointing along X+;

• kerλ±|X± = ξ±.

If ω = dλ is globally exact and the Liouville vector field is outwards/inwards pointing alongX±,
we say that (M,ω) is a Liouville cobordism. The boundary componentX+ is called convex or positive,
and X−, concave or negative. Note that a symplectic cobordism is directed; in general there might be
such a cobordism from X− to X+ but not viceversa. In fact, the relation (X−, ξ−) � (X+, ξ+)
whenever there exists a symplectic cobordism as above, is reflexive, transitive, but not symmetric.
We remark that the opposite convention on the choice of to and from are also used in the literature.

Exercise 15. Prove that (X−, ξ−) � (X+, ξ+) is reflexive and transitive.

Definition 2.27 (Symplectic filling/Liouville domain). A (strong, Liouville) symplectic filling of a
contact manifold (X, ξ) is a (strong, Liouville) compact symplectic cobordism from the empty set
to (X, ξ). A Liouville filling is also called a Liouville domain.

The Liouville manifold associated to a Liouville domain (M,ω) is its Liouville completion, obtained
by attaching a cylindrical end:

(M̂, ω̂ = dλ̂) = (M,ω = dλ) ∪∂M ([1,+∞)× ∂M, d(rα)),

where α = λ|∂M is the contact formm at the boundary. Liouville manifolds are therefore “convex
at infinity”.

It is a fundamental question of contact topology whether a contact manifold is fillable or not,
and, if so, how many fillings it admits (say, up to symplectomorphism, diffeomorphism, home-
omorphism, homotopy equivalence, s-cobordism, h-cobordism,...). Note that, given a filling, one
may choose to perform a symplectic blowup in the interior, which doesn’t change the boundary but
changes the symplectic manifold; in order to remove this trivial ambiguity one usually considers
symplectically aspherical fillings, i.e. symplectic manifolds (M,ω) for which [ω]|π2(M) = 0 (this holds
if e.g. ω is exact, as the case of a Liouville filling).

For example, the standard sphere (S2n−1, ξstd) admits the unit ball (B2n, ωstd) as a Liouville
filling. A fundamental theorem of Gromov [Gro85, p. 311] says that this is unique (strong, sym-
plectically aspherical:=ssa) filling up to symplectomorphism in dimension 4; this is known up
to diffeomorphism in higher dimensions by a result of Eliashberg–Floer–McDuff [M91], but un-
known up to symplectomorphism. This was generalized to the case of subcritically Stein fillable
contact manifolds in [BGZ]. Another example is a unit cotangent bundle (S∗Q, ξstd), which ad-
mits the standard Liouville filling (D∗Q,ωstd). There are known examples of manifolds Q with
(S∗Q, ξstd) admitting only one ssa filling up to symplectomorphism (e.g. Q = T2, [Wen]; if n ≥ 3
and Q = Tn, this also holds up to diffeomorphism [BGM, GKZ]), but there are other examples
with non-unique ssa fillings which are not blowups of each other (e.g. Q = Sn, n ≥ 3 [Oba]). See
also [SvHM, LMY, LO]. The literature on fillings is vast (especially in dimension 3) and this list is
by all means non-exhaustive.

Remark 2.28. There are also other notions of symplectic fillability: weak, Stein, Weinstein... which
we will not touch upon. The set of contact manifolds admitting a filling of every such type is related
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via the following inclusions:

{Stein} ⊂ {Weinstein} ⊂ {Liouville} ⊂ {strong} ⊂ {weak}.

The first inclusion is an equality by a deep result of Eliashberg [CieEli]. All others are strict inclu-
sions, something that has been in known in dimension 3 for some time [Bow, Ghi, Eli96], but has
been fully settled in higher-dimensions only very recently [BGM, BCS, ZZ, MNW].

A very broad class for which very strong uniqueness results hold is the following. We say that a
contact 3-manifold (X, ξ) is planar if ξ is supported (in the sense of Giroux) by an open book whose
page has genus zero.

Theorem J (Wendl [Wen]). Assume that (M,ω) is a strong symplectic filling of a planar contact 3-
manifold (X, ξ), and fix a supporting open book of genus zero pages, i.e. M = OB(P, φ) with g(P ) = 0.
Then (M,ω) is symplectomorphic to a (symplectic) blow-up of the symplectic Lefschetz fibration LF(P, φ).

If we assume that the strong filling is minimal, in the sense that it doesn’t have symplectic spheres
of self-intersection−1 (i.e. exceptional divisors), such filling is then uniquely determined. It follows
as a corollary, that a planar contact manifold is strongly fillable if and only if every supporting
planar open book has monodromy isotopic to a product of positive Dehn twists. This reduces the
study of strong fillings of a planar contact 3-manifolds to the study of factorizations of a given
monodromy into product of positive Dehn twists, a problem of geometric group theory in the
mapping class group of a genus zero surface.

References. A good introductory textbook to contact topology is Geiges’ book [G08]. For an
introduction to symplectic topology, McDuff-Salamon [MS] is a must-read. Anna Cannas da Silva
[CdS] is also a very good source, touching on Kähler geometry as well as toric geometry, relevant
for the classical theory of integrable systems. For open books and Giroux’s correspondence in
dimension 3, Etnyre’s notes [E06] is a good place to learn. For open books in complex singularity
theory (i.e. Milnor fibrations), the classical book by Milnor [M68] is a gem. For related reading on
Brieskorn manifolds in contact topology, Lefschetz fibrations and further material, Kwon-van Koert
[KvK] is a great survey. Another good source for symplectic geometry in dimension 4, Lefschetz
pencils, and its relationship to holomorphic curves and rational/ruled surfaces, is Wendl’s recent
book [Wen2].

3. THE THREE-BODY PROBLEM.

After paving the way, we now discuss a very old conundrum. The setup of the classical 3-
body problem consists of three bodies in R3, subject to the gravitational interactions between them,
which are governed by Newton’s laws of motion. Given initial positions and velocities, the problem
consists in predicting the future positions and velocities of the bodies. The understanding of the
resulting dynamical system is quite a challenge, and an outstanding open problem.

We consider three bodies: Earth (E), Moon (M) and Satellite (S), with masses mE ,mM ,mS . We
have the following special cases:

• (restricted) mS = 0 (the Satellite is negligible wrt the primaries E and M);
• (circular) Each primary moves in a circle, centered around the common center of mass of

the two (as opposed to general ellipses);
• (planar) S moves in the plane containing the primaries;
• (spatial) The planar assumption is dropped, and S is allowed to move in three-space.
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The restricted problem then consists in understanding the dynamics of the trajectories of the
Satellite, whose motion is affected by the primaries, but not vice-versa. For simplicity, we will
use the acronym CR3BP=circular restricted three-body problem. We denote the mass ratio by µ =

mM
mE+mM

∈ [0, 1], and we normalize so that mE +mM = 1, and so µ = mM .
In a suitable inertial plane spanned by the E and M , the position of the Earth becomes E(t) =

(µ cos(t), µ sin(t)), and the position of the Moon is M(t) = (−(1 − µ) cos(t),−(1 + µ) sin(t)). The
time-dependent Hamiltonian whose Hamiltonian dynamics we wish to study is then

Ht : R3\{E(t),M(t)} → R

Ht(q, p) =
1

2
‖p‖2 − µ

‖q −M(t)‖
− 1− µ
‖q − E(t)‖

,

i.e. the sum of the kinetic energy plus the two Couloumb potentials associated to each primary.
Note that this Hamiltonian is time-dependent. To remedy this, we choose rotating coordinates, in
which both primaries are at rest; the price to pay is the appearance of angular momentum term in
the Hamiltonian which represents the centrifugal and Coriolis forces in the rotating frame. Namely,
we undo the rotation of the frame, and assume that the positions of Earth and Moon are E =
(µ, 0, 0), M = (−1 + µ, 0, 0). After this (time-dependent) change of coordinates, which is just the
Hamiltonian flow of L = p1q2 − p2q1, the Hamiltonian becomes

H : R3\{E,M} × R3 → R

H(q, p) =
1

2
‖p‖2 − µ

‖q −M‖
− 1− µ
‖q − E‖

+ p1q2 − p2q1,

and in particular is autonomous. By preservation of energy, this means that it is a preserved quantity
of the Hamiltonian motion. The planar problem is the subset {p3 = q3 = 0}, which is clearly
invariant under the Hamiltonian dynamics.

There are precisely five critical points of H , called the Lagrangian points Li, i = 1, . . . , 5, ordered
so that H(L1) < H(L2) < H(L3) < H(L4) = H(L5) (in the case µ < 1/2; if µ = 1/2 we further
have H(L2) = H(L3)). L1, L2, L3, all saddle points, lie in the axis between Earth and Moon (they
are the collinear Lagrangian points). L1 lies between the latter, while L2 on the opposite side of the
Moon, and L3 on the opposite side of the Earth. The others, L4, L5, are maxima, and are called the
triangular Lagrangian points. For c ∈ R, consider the energy hypersurface Σc = H−1(c). If

π : R3\{E,M} × R3 → R3\{E,M}, π(q, p) = q,

is the projection onto the position coordinate, we define the Hill’s region of energy c as

Kc = π(Σc) ∈ R3\{E,M}.
This is the region in space where the Satellite of energy c is allowed to move. If c < H(L1) lies below
the first critical energy value, then Kc has three connected components: a bounded one around the
Earth, another bounded one around the Moon, and an unbounded one. Namely, if the Satellite
starts near one of the primaries, and has low energy, then it stays near the primary also in the future.
The unbounded region corresponds to asteroids which stay away from the primaries. Denote the
first two components by KEc and KMc , as well as ΣEc = π−1(KEc ) ∩ Σc, ΣMc = π−1(KMc ) ∩ Σc, the
components of the corresponding energy hypersurface over the bounded components of the Hill
region. As c crosses the first critical energy value, the two connected components KEc and KMc get
glued to each other into a new connected component KE,Mc , which topologically is their connected
sum. Then, the Satellite in principle has enough energy to transfer between Earth and Moon. In
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FIGURE 10. The low energy Hill regions.

terms of Morse theory, crossing critical values corresponds precisely to attaching handles, so similar
handle attachments occur as we sweep through the energy values until the Hill region becomes all
of position space. See Figure 10.

4. MOSER REGULARIZATION.

The 5-dimensional energy hypersurfaces are non-compact, due to collisions of the massless body
S with one of the primaries, i.e. when if q = M or q = E. Note that the Hamiltonian becomes
singular at collisions because of the Couloumb potentials, and conservation of energy implies that
the momenta necessarily explodes whenever S collides (i.e. p = ∞). Fortunately, there are ways
to regularize the dynamics even after collision. Intuitively, the effect is: whenever S collides with
a primary, it bounces back to where it came from, and hence we continue the dynamics beyond
the catastrophe. More formally, one is looking for a compactification of the energy hypersurface,
which may be viewed as the level set of a new Hamiltonian on another symplectic manifold, in such
a way that the Hamiltonian dynamics of the compact, regularized level set is a reparametrization of
the original one (time is forgotten under regularization).

Two body collisions can be regularized via Moser’s recipe. This consists in interchanging po-
sition and momenta, and compactifying by adding a point at infinity corresponding to collisions
(where the velocity explodes). The bounded components ΣEc and ΣMc (for c < H(L1)), as well as
ΣE,Mc (for c ∈ (H(L1), H(L1) + ε)), are thus compactified to compact manifolds Σ

E

c , Σ
M

c , and Σ
E,M

c .
The first two are diffeomorphic to S∗S3 = S3 × S2, and should be thought of as level sets in (two
different copies of) (T ∗S3, ωstd) of a suitable regularized Hamiltonian Q : T ∗S3 → R. The fiber
of the level sets Σ

E

c , Σ
M

c over (a momenta) p ∈ S3 is a 2-sphere allowed positions q in order to
have fixed energy. If p = ∞ is the North pole, the fiber, called the collision locus, is the result of
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a real blow-up at a primary, i.e. we add all possible ”infinitesimal” positions nearby (which one
may think of as all unit directions in the tangent space of the primary). On the other hand, Σ

E

c is a
copy of S∗S3#S∗S3, which can be understood in terms of handle attachments along a critical point
of index 1. In the planar problem, the situation is similar: we obtain copies of S∗S2 = RP 3 and
RP 3#RP 3.

In terms of formulas, this can be done as follows.

4.1. Stark-Zeeman systems. We will only do the subcritical case c < H(L1). By restricting the
Hamiltonian to the Earth or Moon component, we can view the three-body problem as a Stark-
Zeeman system, which is a more general class of mechanical systems.

To define such systems in general, consider a twisted symplectic form

ω = d~p ∧ d~q + π∗σB ,

with σB = 1
2

∑
Bijdqi ∧ dqj a 2-form on the position variables (a magnetic term, which physically

represents the presence of an electromagnetic field, as in Maxwell’s equations), and π(q, p) = q the
projection to the base. A Stark-Zeeman system for such a symplectic form is a Hamiltonian of the
form

H(~q, ~p) =
1

2
‖~p‖2 + V0(~q) + V1(~q),

where V0(~q) = − g
‖~q‖ for some positive coupling constant g, and V1 is an extra potential.1

We will make two further assumptions.

Assumptions.
(A1) We assume that the magnetic field is exact with primitive 1-form ~A. Then with respect to

d~p ∧ d~q we can write

H(~q, ~p) =
1

2
‖~p+ ~A(~q)‖2 + V0(~q) + V1(~q).

(A2) We assume that ~A(~q) = (A1(q1, q2), A2(q1, q2), 0), and that the potential satisfies that sym-
metry V1(q1, q2,−q3) = V1(q1, q2, q3).

Observe that these assumptions imply that the planar problem, defined as the subset {(~q, ~p) :
q3 = p3 = 0}, is an invariant set of the Hamiltonian flow. Indeed, we have

q̇3 =
∂H

∂p3
= p3, and ṗ3 = −∂H

∂q3
= − gq3
‖~q‖3

− ∂V1
∂q3

. (4.3)

Both these terms vanish on the subset q3 = p3 = 0 by noting that the symmetry implies that
∂V1

∂q3
|q3=0 = 0.

For non-vanishing g, Stark-Zeeman systems have a singularity corresponding to two-body colli-
sions, which we will regularize by Moser regularization. To do so, we will define a new Hamilton-
ian Q on T ∗S3 whose dynamics correspond to a reparametrization of the dynamics of H . We will
describe the scheme for energy levels H = c, which we need to fix a priori (i.e. the regularization is
not in principle for all level sets at once). Define the intermediate Hamiltonian

K(~q, ~p) := (H(~q, ~p)− c)‖~q‖.

1In this section, we will use the symbol~ for vectors in R3 to make our formulas for Moser regularization simpler. We
will use the convention that ξ ∈ R4 has the form (ξ0, ~ξ).
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For ~q 6= 0, this function is smooth, and its Hamiltonian vector field equals

XK = ‖~q‖ ·XH + (H − c)X‖~q‖.
We observe that XK is a multiple of XH on the level set K = 0. Writing out K gives

K =

(
1

2
(‖~p‖2 + 1)− (c+ 1/2) + 〈~p, ~A〉+

1

2
‖ ~A‖2 + V1(~q)

)
‖~q‖ − g.

Stereographic projection. We now substitute with the stereographic coordinates. The basic idea is
to switch the role of momentum and position in the ~q, ~p-coordinates, and use the ~p-coordinates as
position coordinates in T ∗Rn (for any n), where we think of Rn as a chart for Sn. We set

~x = −~p, ~y = ~q.

We view T ∗Sn as a symplectic submanifold of T ∗Rn+1, via

T ∗Sn = {(ξ, η) ∈ T ∗Rn+1| ‖ξ‖2 = 1, 〈ξ, η〉 = 0}.
Let N = (1, 0, . . . , 0) ∈ Sn be the north pole. To go from T ∗Sn\T ∗NSn to T ∗Rn we use the stereo-
graphic projection, given by

~x =
~ξ

1− ξ0
~y = η0~ξ + (1− ξ0)~η.

(4.4)

To go from T ∗Rn to T ∗Sn\T ∗NSn, we use the inverse given by

ξ0 =
‖~x‖2 − 1

‖~x‖2 + 1

~ξ =
2~x

‖~x‖2 + 1

η0 = 〈~x, ~y〉

~η =
‖~x‖2 + 1

2
~y − 〈~x, ~y〉~x.

(4.5)

These formulas imply the following identities

2

‖~x‖2 + 1
= 1− ξ0, ‖~y‖ =

2‖η‖
‖~x‖2 + 1

= (1− ξ0)‖η‖

which allows us to simplify the expression forK. Setting n = 3, we obtain a Hamiltonian K̃ defined
on T ∗S3, given by

K̃ =

(
1

1− ξ0
− (c+ 1/2)− 1

1− ξ0
〈~ξ, ~A(ξ, η)〉+

1

2
‖ ~A(ξ, η)‖2 + V1(ξ, η)

)
(1− ξ0)‖η‖ − g

= ‖η‖
(

1− (1− ξ0)(c+ 1/2)− 〈~ξ, ~A(ξ, η)〉+ (1− ξ0)

(
1

2
‖ ~A(ξ, η)‖2 + V1(ξ, η)

))
− g

Put

f(ξ, η) = 1 + (1− ξ0)

(
−(c+ 1/2) +

1

2
‖ ~A(ξ, η)‖2 + V1(ξ, η)

)
− 〈~ξ, ~A(ξ, η)〉

= 1 + (1− ξ0)b(ξ, η) +M(ξ, η)

(4.6)
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where
b(ξ, η) = −(c+ 1/2) +

1

2
‖ ~A(ξ, η)‖2 + V1(ξ, η)

M(ξ, η) = −〈~ξ, ~A(ξ, η)〉
Note that the collision locus corresponds to ξ0 = 1, i.e. the cotangent fiber over N . The notation is
supposed to suggest that (1− ξ0)b(ξ, η) vanishes on the collision locus and M is associated with the
magnetic term; it is not the full magnetic term, though. We then have that

K̃ = ‖η‖f(ξ, η)− g.
To obtain a smooth Hamiltonian, we define the Hamiltonian

Q(ξ, η) :=
1

2
f(ξ, η)2‖η‖2.

The dynamics on the level set Q = 1
2g

2 are a reparametrization of the dynamics of K̃ = 0, which in
turn correspond to the dynamics of H = c.

Remark 4.1. We have chosen this form to stress thatQ is a deformation of the Hamiltonian describ-
ing the geodesic flow on the round sphere, which is given by level sets of the Hamiltonian

Qround =
1

2
‖η‖2.

This is the dynamics that one obtains in the regularized Kepler problem (the two-body problem;
see below), corresponding to the Reeb dynamics of the contact form given by the standard Liouville
form. As we have seen, this is a Giroux form for the open book S∗S3 = OB(D∗S2, τ2), supporting
the standard contact structure on S∗S3.

Formula for the restricted three-body problem. Since the restricted three-body problem is our
main interest, we conclude this section by giving the explicit formula for this problem. By complet-
ing the squares, we obtain

H(~q, ~p) =
1

2

(
(p1 + q2)2 + (p2 − q1)2 + p23

)
− µ

‖~q − ~m‖
− 1− µ
‖~q − ~e‖

− 1

2
(q21 + q22).

This is then a Stark-Zeeman system with primitive

~A = (q2,−q1, 0),

coupling constant g = µ, and potential

V1(~q) = − 1− µ
‖~q − ~e‖

− 1

2
(q21 + q22), (4.7)

both of which satisfy Assumptions (A1) and (A2).
After a computation, we obtain

f(ξ, η) = 1 + (1− ξ0) (−(c+ 1/2) + ξ2η1 − ξ1η2)− ξ2 (1− µ)− (1− µ)(1− ξ0)

‖~η(1− ξ0) + ~ξη0 + ~m− ~e‖
, (4.8)

and we have

b(ξ, η) = −(c+ 1/2)− (1− µ)

‖~η(1− ξ0) + ~ξη0 + ~m− ~e‖
(4.9)

M(ξ, η) = (1− ξ0)(ξ2η1 − ξ1η2)− ξ2(1− µ). (4.10)
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4.2. Levi-Civita regularization. We follow the exposition in [FvK18]. Consider the map

L : C2\(C× {0})→ T ∗C\C,

(u, v) 7→
(u
v
, 2v2

)
,

where we view C ⊂ T ∗C as the zero section. Using C as a chart for S2 via the stereographic
projection along the north pole, this map extends to a map

L : C2\{0} → T ∗S2\S2,

which is a degree 2 cover. Writing (p, q) for coordinates on T ∗C = C × C (this is the opposite to
the standard convention, and comes from the Moser regularization), the Liouville form on T ∗C is
λ = q1dp1 + q2dp2, with associated Liouville vector field X = q1∂q1 + q2∂q2 . One checks that

L∗λ = 2(v1du1 − u1dv1 + v2du2 − u2dv2),

whose derivative is the symplectic form

ω = dλ = 4(dv1 ∧ du1 + dv2 ∧ du2).

Note that λ and ω are different from the standard Liouville and symplectic forms (resp.) on C2.
However, the associated Liouville vector field defined via iV ω = λ coincides with the standard
Liouville vector field

V =
1

2
(u1∂u1

+ u2∂u2
+ v1∂v1 + v2∂v2),

and we have L∗X = V . We conclude:

Lemma 4.2. A closed hypersurface Σ ⊂ T ∗S2 is fiber-wise star-shaped if and only if L−1(Σ) ⊂ C2\{0} is
star-shaped.

Note that Σ ∼= S∗S2 ∼= RP 3, and L−1(Σ) ∼= S3, and so L induces a two-fold cover between these
two hypersurfaces.

4.3. Kepler problem. We now work out the Moser and Levi-Civita regularizations of the Kepler
problem at energy − 1

2 . This is the well-known two-body problem, whose Hamiltonian is given by

E : T ∗(R2\{0})→ R,

E(q, p) =
1

2
‖p‖2 − 1

‖q‖
.

The result of Moser regularization is the Hamiltonian

K(p, q) =
1

2

(
‖q‖

(
E(−q, p) +

1

2

)
+ 1

)2

=
1

2

(
1

2

(
‖p‖2 + 1

)
‖q‖
)2

.

This is the kinetic energy of the “momentum” q, with respect to the round metric, viewed in the
stereographic projection chart. It follows that its Hamiltonian flow is the round geodesic flow.
Moreover, we have

XK |E−1(−1/2)(p, q) = ‖q‖XE |E−1(−1/2)(−q, p),
so that the Kepler flow is a reparametrization of the round geodesic flow.
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To understand the Levi-Civita regularization, we consider the shifted Hamiltonian H = E + 1
2

(which has the same Hamiltonian dynamics). After substituing variables via the Levi-Civita map
L, we obtain

H(u, v) =
‖u‖2

2‖v‖2
− 1

2‖v‖2
+

1

2
.

We then consider the Hamiltonian

Q(u, v) = ‖v‖2H(u, v) =
1

2
(‖u‖2 + ‖v‖2 − 1).

The level set Q−1(0) = H−1(0) is the 3-sphere, and the Hamiltonian flow of Q, a reparametrization
of that of H , is the flow of two uncoupled harmonic oscillators. This is precisely the Hopf flow. We
summarize this discussion in the following:

Proposition 4.3. The Moser regularization of the Kepler problem is the geodesic flow on S2. Its Levi-Civita
regularization is the Hopf flow on S3, i.e. the double cover of the geodesic flow on S2 (cf. Rk. 2.19).

5. THE PERTURBATIVE PHILOSOPHY, AND SOME HISTORICAL REMARKS.

One of the most basic approaches that underlies mathematics and physics is the perturbative
approach. Basically, it means understanding a simplified situation first, where everything can be
explicitly understood, and attempt to understand ”nearby” situations by perturbing the parameters
relevant to the problem in question.

In the context of celestial/classical mechanics, this was precisely the approach of Poincaré. The
idea is to start with a limit case, which is completely integrable (i.e. an integrable system), perturb
it, and study what remained. Integrable systems, roughly speaking, are those which allow enough
symmetries so that the solutions to the equations of motion can be explicitly solved for. The solu-
tions tend to admit descriptions in terms of algebraic geometry. In the classical setting of celestial
mechanics, if phase-space is 2n-dimensional and the Hamiltonian H Poisson-commutes with other
n − 1 Hamiltonians (which are therefore preserved under the Hamiltonian flow of H), the well-
known Arnold-Liouville theorem provides action-angle coordinates in which the symplectic man-
ifold is foliated by flow-invariant tori, along which the Hamiltonian flow is linear, with varying
slopes (the frequencies). The generic tori are half-dimensional (and Lagrangian, i.e. the symplectic
form vanishes along them), whereas there might also be degenerate lower-dimensional tori. This is
the natural realm of toric symplectic geometry, dealing with symplectic manifolds which admit a
Hamiltonian action of the torus, and the study of the corresponding moment maps and their asso-
ciated Delzant polytopes. There is also a related theory in algebraic geometry, where the polytope
is replaced with a fan.

The study of what remains after a small perturbation of an integrable system is the realm of
KAM theory, as well as complementary weaker versions such as Aubry-Mather theory. Roughly
speaking, the original version of the KAM theorem (due to Kolmogorov-Arnold-Moser) says that
if one perturbs a “sufficiently irrational” Liouville torus, i.e. the vector of frequencies of the action
is very badly approximated by rational numbers (it is diophantine) and moreover the Hessian with
respect to angle variables is non-degenerate, then the Liouville tori survives to an invariant tori
whose frequencies are close to the original one, and hence is foliated by orbits which are quasi-
periodic, in the sense that they are dense in the tori and never close up. Aubry-Mather theory is
meant to deal with the rest of the tori, including resonant ones which are foliated by closed orbits
and non-diophantine non-resonant ones, as well as large deformations (as opposed to sufficiently
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small perturbations). This theory provides invariant subsets which are usually Cantor-like, and
obtained via measure-theoretical means (they are the supports of invariant measures minimizing
certain action functionals).

The Poincaré-Birkhoff theorem, and the planar three-body problem. The problem of finding
closed orbits in the planar case of the restricted three-body problem goes back to ground-breaking
work in celestial mechanics of Poincaré [P12, P87], building on work of G.W. Hill on the lunar
problem [H77, H78]. The basic scheme for his approach may be reduced to:

(1) Finding a global surface of section for the dynamics;
(2) Proving a fixed point theorem for the resulting first return map.

This is the setting for the celebrated Poincaré-Birkhoff theorem, proposed and confirmed in special
cases by Poincaré and later proved in full generality by Birkhoff in [Bi13]. The statement can be
summarized as: if f : A→ A is an area-preserving homeomorphism of the annulusA = [−1, 1]×S1

that satisfies a twist condition at the boundary (i.e. it rotates the two boundary components in
opposite directions), then it admits infinitely many periodic points of arbitrary large period. The
fact that the area is preserved is a consequence of Liouville’s theorem for Hamiltonian systems; we
have basically used this in our proof of Proposition 2.16.

The whole point of a global surface of section is to reduce a continuous flow on a 3-manifold to
the discrete dynamics of a map on a 2-manifold, thus reducing by one the degrees of freedom. It is
perhaps fair to say, that this key (and beautiful) idea is responsible for motivating the well-studied
area of dynamics on surfaces, a huge industry in its own right.

The direct and retrograde orbits. The actual physical Moon is in direct motion around the Earth
(i.e. it rotates in the same direction around the Earth as the Earth around the Sun). The opposite
situation is a retrograde motion. In [H77, H78], while attempting to model the motion of the Moon,
Hill indeed finds both direct and retrograde orbits. While still an idealized situation, such direct
orbit is a reasonable approximation to the actual orbit of the Moon, and Hill even goes further to
find better approximations via perturbation theory, something which deeply impressed Poincaré
himself. Topologically, one may think of the retrograde/direct orbits as obtained from a Hopf link
in S3, via the double cover to RP 3. This is the binding of the open book RP 3 = OB(D∗S1, τ2),
where τ is the positive Dehn twist along S1 ⊂ D∗S1.

Brouwer’s and Frank’s theorem. In order to find the direct orbit away from the lunar problem,
Birkhoff had in mind finding a disk-like surface of section whose boundary is precisely the retro-
grade orbit. The direct orbit would then be found via Brouwer’s translation theorem: every area
preserving homeomorphism of the open disk admits a fixed point. Removing the fixed point, we
obtain an area preserving homeomorphism of the open annulus, which, via a theorem of Franks,
admits either none or infinitely many periodic points. All this combined, one has: an area preserv-
ing homeomorphism of an open disk admits either one or infinitely many periodic points. Note
that if the boundary is also an orbit, we obtain 2 or infinitely many. If furthermore we have twist,
the Poincaré-Birkohff theorem provides infinitely many orbits. This is a classical heuristic for find-
ing orbits that has survived to this day in several guises. See Figure 11.

Perturbative results. Smoothly, as we have seen, we have RP 3 = OB(D∗S1, τ2), and one would
hope that a concrete version of this open book is adapted to the (Moser-regularized) planar dy-
namics, and that the return map is a Birkhoff twist map. For c < H(L1) and µ ∼ 0 small, one
can interpret from this perspective that Poincaré [P12] proved this by perturbing the rotating Ke-
pler problem (when µ = 0), which is an integrable system for which the return map is a twist
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FIGURE 11. Obtaining closed orbits in the planar problem.

map. In the case where c � H(L1) is very negative and µ ∈ (0, 1) is arbitrary, this was done by
Conley [C63] (also perturbatively), who checked the twist condition and used Poincaré-Birkhoff.
In [M69], McGehee provides a disk-like global surface of section for the rotating Kepler problem
problem for c < H(L1) and µ arbitrary, and computes the return map.

Non-perturbative results. More generally and non-perturbatively, the existence of this adapted
open book was obtained in [HSW, Thm. 1.18] for the case where (µ, c) lies in the convexity range
via holomorphic curve methods due to Hofer-Wysocki-Zehnder [HWZ98] (see also [AFFHvK, AF-
FvK]). We will discuss this non-perturbative approach below.

As a final remark for this section, we point out that the advantage of KAM theory (in the per-
tubative case), when compared to more abstract approaches via general fixed point theorems, is
that in favourable situations one can localize periodic (or quasi-periodic) orbits in bounded regions
of phase-space, and obtain better qualitative information on these. This is, of course, much more
complicated in non-perturbative situations, where rigorous numerics is usually the preferred ap-
proach.

References. A nice basic introduction to the classical KAM theorem is e.g. [W08]. Another very
nice exposition on the basics behind Mather theory is e.g. [S15]. A beautiful and very detailed
account on the three-body problem and Poincaré’s work are the notes by Chenciner [Ch15].

6. CONTACT GEOMETRY IN THE RESTRICTED THREE-BODY PROBLEM.

The next result opens up the possibility of using techniques from contact geometry on the
CR3BP:

Theorem K ( [AFvKP] (planar problem), [CJK] (spatial problem)). If c < H(L1), the Moser-regularized
energy hypersurfaces Σ

E

c and Σ
M

c are contact-type. The same holds for ΣE,Mc , if c ∈ (H(L1), H(L1) + ε)
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for sufficiently small ε > 0. As contact manifolds, we have

Σ
E

c
∼= Σ

M

c
∼= (S∗S3, ξstd), if c < H(L1),

and
Σ
M

c
∼= (S∗S3, ξstd)#(S∗S3, ξstd), if c ∈ (H(L1), H(L1) + ε).

�

Recall that the above just means that there exists a Liouville vector field which is transverse to
the regularized level sets; in fact, this is just the fiber-wise Liouville vector field q∂q . We will refer as
the low-energy range to the interval (−∞, H(L1) + ε) of energies c for which the above result holds.

Remark 6.1. To this day, it is unknown whether the contact condition is lost for sufficiently high
Jacobi constant c, but there is strong evidence that suggests that it indeed does not hold.

Remark 6.2 (Weinstein handles). In the above statement, the connected sum is to be interpreted
in the contact category; this amounts to attaching a Weinstein 1-handle to the disjoint union of two
copies of (S∗S3, ξstd). Roughly speaking, this means removing two Darboux balls and identifying
their boundaries via attaching a 1-handle, which is endowed with the extra structure of a symplec-
tic form which glues well to the symplectization form of the standard contact form at each copy.
The result is a Liouville/Weinstein cobordism having (S∗S3, ξstd)

⊔
(S∗S3, ξstd) at the negative end,

and (S∗S3, ξstd)#(S∗S3, ξstd) at the positive one. Note that here the terms positive/negative are
relevant: the Liouville vector field is outwards/inwards pointing at the corresponding boundary
components, respectively, and so these cobordisms are oriented. This is always the local Morse-
theoretical picture for a non-degenerate index 1 critical point of a Hamiltonian (as is the case of L1).
To learn about Weinstein manifolds, see e.g. [CieEli]; this source also provides deep connections
between this notion and that of Stein manifolds.

References. For a very detailed and well-exposed overview of contact geometry and holomor-
phic curves in the planar case of the CR3BP, we refer to Frauenfelder-van Koert [FvK18]. Indeed,
the subject of this book is precisely the direction outlined in these lecture notes, but focused on the
planar problem, and so the reader is specially encouraged to delve in it.

6.1. Non-perturbative methods: holomorphic curves. We now discuss the non-perturbative ap-
proach coming from the theory of holomorphic curves.

Hofer-Wysocki-Zehnder. We begin with a definition. A connected compact hypersurface Σ ⊂
R4 is said to be strictly convex if there exists a domain W ⊂ R4 and a smooth function φ : R4 → R
satisfying:

(i) (Regularity) Σ = {φ = 0} is a regular level set;
(ii) (Bounded domain) W = {z ∈ R4 : φ(z) ≤ 0} is bounded and contains the origin; and

(iii) (Positive-definite Hessian) ∇2φz(h, h) > 0 for z ∈ W and for each non-zero tangent vector
h ∈ TΣ.

In this case, the radial vector field is transverse to Σ, and so Σ is a contact-type 3-sphere, inheriting
a contact form α induced by the standard Liouville form in R4.

Remark 6.3. In the planar restricted three-body problem, the values of energy/mass ratio (c, µ) for
which the Levi-Civita regularization is strictly convex is called the convexity range.

In [HWZ98], Hofer-Wysocki-Zehnder prove the following:
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Theorem L. [HWZ98] A strictly convex hypersurface (Σ, α) ⊂ R4 has either 2 or infinitely many periodic
orbits.

The strategy of the proof is finding a disk-like global surface of section, and use the combina-
tion Brouwer-Franks mentioned as a heuristics above. The difficulty is precisely finding the sec-
tion. These are to be thought of as the (holomorphic) pages of a trivial open book on Σ ∼= S3 =
OB(D2,1), which is adapted to the given Reeb dynamics. The rough idea is as follows.

Consider the symplectization (M,ω) = (R × Σ, d(etα)) of (Σ, α). Its tangent space splits as
TM = ξ ⊕ 〈∂t, Rα〉. A (cylindrical, α-compatible) almost complex structure is an endomorphism
J ∈ End(TM) satisfying:

• J2 = −1 (i.e. J is a “90-degree rotation” at each tangent space);
• J(ξ) = ξ, J(∂t) = Rα;
• J is R-invariant;
• g = dα(·, J ·) defines a J-invariant Riemannian metric on ξ.

A J-holomorphic plane is then a map

u : (C, i)→ (M,J),

intertwining the complex structures, i.e. satisfying the non-linear Cauchy-Riemann equation

J ◦ du = du ◦ i.

The Hofer-energy of such a plane is the quantity

E(u) = sup
ϕ∈P

∫
C
u∗ωϕ,

where P = {ϕ : R → (0, 1) : ϕ′ ≥ 0} is the set of orientation preserving diffeomorphisms between
R and (0, 1), and ωϕ = d(eϕ(t)α) is a symplectic form. The choice of J implies that the integrand
is point-wise non-negative and so E(u) ≥ 0. A fundamental property is that non-constant finite
energy J-holomorphic planes are asymptotic to closed Reeb orbits (originally noted by Hofer in his
proof of the Weinstein conjecture for overtwisted contact 3-manifolds [H93]):

Proposition 6.4. [HWZ98, Thm. 2.2] If E(u) < +∞ and u = (a, v) ∈ R × Σ is non-constant, then
0 <

∫
v∗dα := T < +∞, and there exists a sequence Rk → +∞ such that limk u(Rke

2πit) = γ(tT ), for a
closed Reeb orbit γ.

Moreover, under a non-degeneracy condition for γ, the above convergence is exponential and
limR u(Re2πit) = γ(tT ), limR a(Re2πit) = +∞. A further fundamental property is positivity of in-
tersections; since M is 4-dimensional, generically two planes intersect at a finite number of points,
and if they are holomorphic the intersection numbers are positive. However, there is an an obvi-
ous drawback: planes are non-compact and so the classical intersection pairing is not homotopy
invariant, since intersections can disappear to infinity. The solution to this issue was provided by
Siefring [Sie11], who, using the very explicit asymptotic behaviour of finite energy planes, defined
an intersection pairing with all the desired properties. In particular, it is homotopy invariant, takes
into consideration interior intersections as well as those “coming from infinity”, and two holomor-
phic planes have vanishing Siefring intersection if and only if their images do not intersect at all.
Moreover, in such a case, their projections to Σ do not intersect unless their images coincide. (As
the attentive reader might have already noticed, Siefring’s work is posterior to the above result; but
we will ignore this for the purposes of this rough discussion).
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With these preambles, the main idea for the proof of Thm. L is as follows. One assumes the
existence of a special Reeb orbit γ, in the sense that is unknotted and linked to every other Reeb
orbit (necessary conditions to be the binding of a trivial open book for S3), non-degenerate, has
minimal period, and satisfies µCZ(γ) = 3. Here, we use the Conley-Zehnder index µCZ , which is
roughly speaking a winding number associated to paths of symplectic matrices which are suitably
non-degenerate, and is used to assign to every Reeb orbit γ an integer µCZ(γ) (which depends
on a trivialization of the tangent bundle along a choice of disk bounded by γ; in the case of S3,
where π2(S3) = 0, this is independent on choices). One then considers the moduli space M of
finite energy J-holomorphic planes asymptotic to this Reeb orbit γ, and having vanishing Siefring
self-intersection, modulo the action of R-translation in the image (recall J is R-invariant) and con-
formal reparametrizations of the domain C. Its expected dimension is dimM = µCZ(γ) − 2 = 1,
by the Riemann-Roch formula for the Fredholm index. Moreover, the miraculous 4-dimensional
phneomenon of automatic transversality shows that M is a manifold for any cylindrical J . The
properties of the Siefring pairing implies that the projections of planes inM are immersed, do not
intersect, and provide a local foliation of Σ. A further step needed in order to get a global foliation
is a way to compactifyM. This is provided by Gromov’s compactification (or the SFT compacti-
fication), obtained by adding strata of nodal curves and “holomorphic buildings” with potentially
several “floors”; strictly speaking, these a priori are no longer planes. However, the fact that γ is
linked to every other orbit can be used to show that no extra strata needs to be added toM, and
is in fact a priori compact. The result is thatM ∼= S1, and projecting plane inM to Σ provides a
global foliation of Σ. The leaves of this foliation are the S1-family of pages of an open book with
binding γ, and are in fact global surfaces of section for the Reeb dynamics.

While the assumption on the existence of γ above might seem far-fetched, it is implied by dy-
namical convexity [HWZ98, Thm. 1.3]. One says that (Σ, α) is dynamically convex if µCZ(γ) ≥ 3 for
Reeb every orbit γ. This condition is implied by strict convexity [HWZ98, Thm. 3.4]; intuitively, this
implies that there is “enough winding” of the linearized Reeb flow along each orbit (and so, at the
end of the day when the open book is obtained, this condition applied to the binding γ implies that
the arising return map extends to the boundary). The special Reeb orbit is found by first consid-
ering the case of an ellipsoid, in which it is explicitly found, then interpolating to the dynamically
convex case by considering a symplectic cobordism, and finally using properties of finite energy
planes in cobordisms; see Section 4 in [HWZ98].

Conclusion. The main message to take away from this discussion is that the global surfaces
of section are the (holomorphic) pages of a trivial open book on Σ ∼= S3 = OB(D2,1), which is
a posteriori adapted to the given Reeb dynamics. The way that this result ties up with the planar
CR3BP is via the Levi-Civita regularization; one says that (µ, c) lies in the convexity range whenever
the Levi-Civita regularization is stritly convex (cf. Prop. 4.3). The holomorphic open book provided
by HWZ, given suitable symmetries, descends to a rational open book on the Moser-regularized
hypersurface RP 3 (i.e. the pages are disks, but their boundary is doubly covered). Alternatively,
[HSW, Thm. 1.18] provides an honest open book with annuli fibers for RP 3 = OB(D∗S1, τ2),
adapted to the planar dynamics. This circle of ideas has also been fruitfully exploited in e.g. [H12,
H14]; see [HS20] for a very nice survey and references therein, especially for the applications on
the planar CR3BP.
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FIGURE 12. The open book for Σc, with c < H(L1), and the first return map f .

7. HOLOMORPHIC CURVE TECHNIQUES ON THE SPATIAL CR3BP.

In this section, we present some (yet unpublished) results of the author, in co-authorship with
Otto van Koert. The main direction is to generalize the approach of Poincaré in the planar problem
(i.e. Steps (1) and (2) outlined above) to the spatial problem.

7.1. Step (1): Global hypersurfaces of section. We first state a structural result:

Theorem M (Moreno–van Koert [MvK]). Denote a connected, bounded component of the regularized,
spatial, circular restricted three-body problem for energy level c by Σc (for any mass ratio µ ∈ (0, 1)). Let H
be the corresponding Hamiltonian, and letL1 be the first Lagrangian critical point. Then Σc is of contact-type
and admits a supporting open book decomposition for energies c < H(L1) that is adapted to the Hamiltonian
dynamics of H . Furthermore, there is ε > 0 such that the same holds for c ∈ (H(L1), H(L1) + ε). The open
books have the following abstract form:

Σc =

{
OB(D∗S2, τ2), if c < H(L1)

OB(D∗S2\D∗S2, τ21 ◦ τ22 ), if c ∈ (H(L1), H(L1) + ε).

Here D∗S2 is the unit cotangent bundle of the 2-sphere, τ is the positive Dehn-Seidel twist along the La-
grangian zero section S2 ⊂ D∗S2, and D∗S2\D∗S2 denotes the boundary connected sum of two copies of
D∗S2. The monodromy of the second open book is the composition of the square of the positive Dehn-Seidel
twists along both zero sections.

See Figure 12 for an abstract representation. We wish to emphasize that Theorem M holds for
c in the whole low-energy range. A heuristical reason is the following: while in the planar case



42 AGUSTIN MORENO

FIGURE 13. Theorem M admits a physical interpretation: away from collisions,
the orbits of the negligible mass point intersect the plane containing the primaries
transversely. This is intuitively clear from a physical perspective, and translates
(after regularization) to the fact that the “pages” {q3 = 0, p3 > 0}, {q3 = 0, p3 <
0} of the “physical” open book are global hypersurfaces of section outside of the
collision locus. Unfortunately this does not extend continuously to the latter, as
explained in Figure 14. The binding is the planar problem.

finding the invariant subset is non-trivial (the search for the direct and retrograde orbits indeed
has a long history), the invariant subset in the spatial case is immediately obvious; it is the planar
problem. The technique of proof does not rely on holomorphic curves, since one can directly write
down the open book explicitly.

The above result is motivated by the following observation. We consider a Stark-Zeemaan sys-
tem satisfying Assumptions (A1) and (A2). In unregularized (or physical) coordinates, we put

Bu := {(~q, ~p) ∈ H−1(c) | q3 = p3 = 0},
the planar problem. Its normal bundle is trivial, and we have the following map to S1:

πp : H−1(c) \Bu −→ S1, (~q, ~p) 7−→ q3 + ip3
‖q3 + ip3‖

. (7.11)

We will refer to this map as the physical open book. We consider the angular 1-form

ωp := dπu :=
Ωup

p23 + q23
,

where
Ωup = p3dq3 − q3dp3, (7.12)

is the unregularized numerator. We need to see whether ωp(XH) is non-negative, and vanishes
only along the planar problem.
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FIGURE 14. There exist (regularized) collision orbits which are periodic and
“bounce” vertically over a primary, always staying on the region q3 > 0 (or q3 < 0).
This means that the “pages” {q3 = 0, p3 > 0}, {q3 = 0, p3 < 0} are not transverse to
the regularized dynamics.

From Equation (4.3), we have

ωp(XH) =
p23 + q23

(
g
‖~q‖3 + 1

q3
∂V1

∂q3
(~q)
)

p23 + q23
. (7.13)

Note that Assumption (A2) implies that ∂V1

∂q3
(~q) = aq3 + O(q23) near q3 = 0, and so 1

q3
∂V1

∂q3
(~q) is

well-defined at q3 = 0. In order for the above expression to satisfy the required non-negativity
condition, we impose the following:

Assumption. (A3) We assume that the function

F (~q) =
g

‖~q‖3
+

1

q3

∂V1
∂q3

(~q)

is everywhere positive.

Note that it suffices that the second summand be non-negative.

Remark 7.1. In the restricted three-body problem, from Equation (4.7), we obtain

∂V1
∂q3

(~q) = q3
1− µ
‖~q − ~e‖3

,

and therefore the corresponding expression in Equation (7.13) is non-negative, vanishing if and
only if p3 = q3 = 0.

The obvious problem of the above computation is that it a priori does not extend to the collision
locus, and indeed it cannot (see Figure 14). In fact, one needs to interpolate with the geodesic open
book described in Section 2.6, which is well-behaved near the collision locus. This creates an in-
terpolation region where fine estimates are needed, and this is the main difficulty in the proof; we
refer to [MvK] for the details.
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FIGURE 15. A page of the open book as a symplectic filling of the planar prob-
lem, viewed as a fiber-wise star-shaped domain in T ∗S2. The geodesic flow corre-
sponds to the unit cotangent bundle.

The return map. For c < H(L1), and after fixing a page P = P1 = π−1(1) ∼= D∗S2 of the corre-
sponding open book, Theorem M implies the existence of a Poincaré return map f : int(D∗S2) →
int(D∗S2). We say that a symplectomorphism f : (M,ω)→ (M,ω) is Hamiltonian if f = φ1K , where
K : R ×M → R is a smooth (time-dependent) Hamiltonian, and φtK is the Hamiltonian isotopy it
generates. This is defined by φ0K = id, d

dtφ
t
K = XKt ◦ φtK , and XHt is the Hamiltonian vector field

of Ht defined via iXHtω = −dHt. Here we write Kt = K(t, ·).

Theorem N (Moreno–van Koert [MvK]). For every µ ∈ [0, 1], c < H(L1), the associated Poincaré return
map extends smoothly to the boundary ∂D∗S2 = RP 3, to an exact symplectomorphism

f = fc,µ : (D∗S2, ω)→ (D∗S2, ω),

where ω = dα (depending on c, µ) is deformation equivalent to the standard symplectic form ωstd on D∗S2.
Moreover, f is Hamiltonian, generated by a (not necessarily autonomous nor rel boundary) Hamiltonian
isotopy φtK which preserves the boundary.

The symplectic form ω is the restriction to a given page P of dα, where α is the contact form on
Σc for the spatial problem, whose restriction to the binding αP is the contact form for the planar
problem. Then (P, ω) is a Liouville filling of (B,αP ). The form ω can be symplectically deformed,
in the class of Liouville fillings of the fixed contact structure on B, to the standard sympletic form
by deforming to the Kepler problem (the limit c → −∞, for which f is the identity). Equivalently,
we can think of P as having the standard symplectic form, but non-standard contact boundary (as
in Figure 15).

The fact that f is an exact symplectomorphism follows from Prop. 2.16. The fact that f extends
to the boundary is non-trivial, and relies on second order estimates near the binding: it suffices
to show that the Hamiltonian giving the spatial problem is positive definite on the symplectic
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normal bundle to the binding. This nondegeneracy condition can be interpreted as a convexity
condition that plays the role, in this setup, of the notion of dynamical convexity due to Hofer-
Wysocki-Zehnder. Note that if a continuous extension exists, then by continuity it is unique.

The fact that f is Hamiltonian where the isotopy is boundary-preserving follows from:
(1) The monodromy φ = τ2 is Hamiltonian, via a boundary-preserving isotopy;
(2) The map f ◦ φ−1 is symplectically trivial via a boundary-preserving isotopy, whenever f is

a return map arising from a Reeb dynamics on an open book with monodromy φ, which
also happens to extend to the boundary;

(3) H1(P ;R) = 0, so that every symplectic isotopy is Hamiltonian.

7.2. Step (2): Fixed-point theory of Hamiltonian twist maps. The periodic points of τ are either
boundary periodic points, which give planar orbits, or interior periodic points which are in 1:1
correspondence with spatial orbits. We are interested in finding interior periodic points.

The Hamiltonian twist condition. We propose a generalization of the twist condition intro-
duced by Poincaré, for the Hamiltonian case and for arbitrary Liouville domains. Let (W,ω = dλ)
be a 2n-dimensional Liouville domain, and consider a Hamiltonian symplectomorphism τ . Let
(B, ξ) = (∂W, kerα) be the contact manifold at the boundary where α = λ|B , and Rα the Reeb
vector field of α. The Liouville vector field Vλ is defined via iVλω = λ.

Definition 7.2. (Hamiltonian twist map) We say that τ is a Hamiltonian twist map (with respect to
α), if τ is generated by a smooth Hamiltonian H : R ×W → R which satisfies XHt |B = htRα for
some positive and smooth function h : R×B → R+.

In particular, Ht|B ≡ const on B, and τ(B) ⊂ B. We have ht = dHt(Vλ)|B is the derivative of
Ht in the Liouville direction Vλ along B, which we assume strictly positive. Also, τ |B is the time-1
map of a positive reparametrization of the Reeb flow on B. But note that, while the latter condition
is only localized at B, the twist condition is of a global nature, as it requires global smoothness of
the generating Hamiltonian (cf. [MvK, Rk. 1.3]).

Here is a simple example illustrating why the smoothness of the Hamiltonian is relevant for the
purposes of fixed points:

Example 7.3 (Integrable twist maps). LetM = Sn for n ≥ 1 with the round metric, andH : T ∗M →
R, H(q, p) = 2π|p| (not smooth at the zero section); φ1H extends to all of D∗M as the identity. It is a
positive reparametrization of the Reeb flow at S∗M , a full turn of the geodesic flow, and all orbits
are fixed points with fixed period. If we smoothen H near |p| = 0 to K(q, p) = 2πg(|p|), with
g(0) = g′(0) = 0, then τ = φ1K : D∗M → D∗M , τ(q, p) = φ

2πg′(|p|)
H (q, p), is now a Hamiltonian twist

map. If g′(|p|) = l/k ∈ Q with l, k coprime, then τ has a simple k-periodic orbit; therefore τ has
simple interior orbits of arbitrary large period (cf. [KH95, p. 350], [M86], for the case M = S1).

Remark 7.4. In what follows, we shall appeal to the symplectic homology (or the Floer homology)
of a Liouville domain (W,λ), denoted SH•(W,λ). This is a homology theory, introduced originally
by Viterbo [V18, V99], which keeps track of both dynamical and topological data; it is, roughly
speaking, the homology of a chain complex generated by critical points of a Morse function on the
interior of W , as well as by Reeb orbits at the boundary ∂W . These are the 1-periodic orbits of an
admissible Hamiltonian, i.e. linear at infinity and C2-small and Morse in the interior. Formally, one
needs to take a direct limit over admissible Hamiltonians whose slope increases to infinity, so that
we capture orbits at the boundary with all possible periods. The grading in symplectic homology
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comes from the Conley-Zehnder index (whenever orbits are non-degenerate); for the degenerate
case, one can also use the Robbin-Salamon index. The details behind its definition are beyond the
scope of this survey; we refer e.g. to [BO09, CO18].

The Hamiltonian twist condition will be used to extend the Hamiltonian to a Hamiltonian that
is admissible for computing symplectic homology. The extended Hamiltonian can have additional
1-periodic orbits and these, as well as 1-periodic orbits on the boundary, need be distinguished
from the interior periodic points of τ . We impose the following conditions to do so.

Index growth. We consider a suitable index growth condition on the dynamics on the boundary,
which is satisfied in the three-body problem whenever the planar dynamics is strictly convex. This
assumption will allow us to separate boundary and extension orbits from interior ones via the
index.

We call a strict contact manifold (Y, ξ = kerα) strongly index-definite if the contact structure (ξ, dα)
admits a symplectic trivialization ε with the property that

• There are constants c > 0 and d ∈ R such that for every Reeb chord γ : [0, T ] → Y of Reeb
action T =

∫ T
0
γ∗α we have

|µRS(γ; ε)| ≥ cT + d,

where µRS is the Robbin–Salamon index [RS93].
Index-positivity is defined similarly, where we drop the absolute value. A variation of this no-

tion was explored in Ustilovsky’s thesis [U99]. He imposed the additional condition π1(Y ) = 0.
With this extra assumption, the concept of index positivity becomes independent of the choice of
trivialization, although the exact constants c and d still depend on the trivialization ε. The global
trivialization is important when considering extensions of our Hamiltonians, as it allows us to mea-
sure the index growth of potential new orbits. The point in the above definition is that the index of
boundary orbits grows to infinity under iterations of our return map, and so these do not contribute
to symplectic homology.

A general condition for index-positivity to hold, which is also relevant for the restricted three-
body problem, is the following:

Lemma 7.5. Suppose that (Σ, α) is a strictly convex hypersurface in R4. Then (Σ, α) is strongly index-
positive.

Fixed-point theorems. We propose the following generalization of the Poincaré–Birkhoff theo-
rem:

Theorem O (Moreno–van Koert [MvK]. Generalized Poincaré–Birkhoff theorem). Suppose that τ
is an exact symplectomorphism of a connected Liouville domain (W,λ), and let α = λ|B . Assume the
following:

• (Hamiltonian twist map) τ is a Hamiltonian twist map, where the generating Hamiltonian is at
least C2;

• (index-definiteness) If dimW ≥ 4, then assume c1(W )|π2(W ) = 0, and (∂W,α) is strongly
index-definite. In addition, assume all fixed points of τ are isolated;

• (Symplectic homology) SH•(W ) is infinite dimensional.
Then τ has simple interior periodic points of arbitrarily large (integer) period.

Remark 7.6. Let us discuss some aspects of the theorem:
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(1) (Grading) We impose the assumptions c1(W )|π2(W ) = 0 (i.e. W is symplectic Calabi-Yau)
to have a well-defined integer grading on symplectic homology.

(2) (Surfaces) If dimW = 2, then the condition that SH•(W ) is infinite dimensional just means
that W is not D2; for D2 we have SH•(D2) = 0, and a rotation on D2 gives an obvious
counterexample to the conclusion. In the surface case, the argument simplifies, and one
can simply work with homotopy classes of loops rather than the grading on symplectic
homology. The Hamiltonian twist condition recovers the classical twist condition for W =
D∗S1, due to orientations.

(3) (Cotangent bundles) The symplectic homology of the cotangent bundle of a closed man-
ifold is well-known to be infinite dimensional, due to a result of Viterbo [V18, V99] (see
also [AS06]), combined e.g. with a theorem of Gromov [G78, Sec. 1.4]. We have c1(T ∗M) = 0
whenever M is orientable. As for the existence of a global trivialization of the contact struc-
ture (ξ, dλcan), we note the following:
• if Σ is an oriented surface, then S∗Σ admits such a global symplectic trivialization;
• if M3 is an orientable 3-manifold, then S∗M3 admits such a global symplectic trivial-

ization.
• In addition, symplectic trivializations of the contact structure on (S∗S2, λcan) are unique

up to homotopy.
(4) (Fixed points) If fixed points are non-isolated, then we vacuously obtain infinitely many of

them, although we cannot conclude that their periods are unbounded; “generically”, one
expects finitely many fixed points.

(5) (Long orbits) If W is a global hypersurface of section for some Reeb dynamics, with return
map τ , interior periodic points with long (integer) period for τ translates into spatial Reeb
orbits with long (real) period.

(6) (Katok examples) There are well-known examples due to Katok [K73] of Finsler metrics on
spheres with only finitely many simple geodesics, which are arbitrarily close to the round
metric; they admit global hypersurfaces of section with Hamiltonian return maps, for which
the index-definiteness and the condition on symplectic homology hold. It follows that the
return map does not satisfy the twist condition for any choice of Hamiltonians.

(7) (Spatial restricted three-body problem) From the above discussion and [MvK], we gather:
the only standing obstruction for applying the above result to the spatial restricted three-
body problem, in case where the planar problem is strictly convex, is the Hamiltonian twist
condition. Here, note that symplectic homology is invariant under deformations of Liou-
ville domains; see e.g. [BR] for a paper with detailed proofs. This would give a proof of
existence of spatial long orbits in the spirit of Conley [C63], which could in principle be col-
lision orbits. Since the geodesic flow on S2 arises as a limit case (i.e. the Kepler problem),
it should be clear from the discussion on Katok examples that this is a subtle condition.
In [MvK], we have computed a generating Hamiltonian for the integrable case of the rotat-
ing Kepler problem; it does not satisfy the twist condition in the spatial case (in the planar
case, a Hamiltonian twist map was essentially found by Poincaré). This does not mean a
priori that there is not another generating Hamiltonian which does, but this seems rather
unlikely.

As a particular case of Thm. O, we state the above result for star-shaped domains in cotangent
bundles, as of independent interest (cf. [H11]):
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Theorem P (Moreno–van Koert [MvK]). Suppose that W is a fiber-wise star-shaped domain in the
Liouville manifold (T ∗M,λcan), where M is simply connected, orientable and closed, and assume that
τ : W → W is a Hamiltonian twist map. If the Reeb flow on ∂W is strongly index-positive, and if all
fixed points of τ are isolated, then τ has simple interior periodic points of arbitrarily large period.

The above also holds for M = S2, as explained in Remark 7.6 (2). The difference with [H11] is
that in this setup we conclude that periodic points are interior, to the expense of imposing index-
positivity and the twist condition.

7.3. Alternative approach: dynamics on moduli spaces. An alternative approach to that of an
abstract fixed-point theorem, is the following (also abstract) construction. We start by recalling
that the page D∗S2 = LF(D∗S1, τ2P ) of the open book of Thm. M has a Lefschetz fibration with
genus zero fibers over the 2-disk, with monodromy the Dehn twist τP (P here is for “planar”, to
differentiate from the monodromy τ used for the spatial case; recall Figure 8). The main geometric
observation for what follows is: the leaf spaceM of such fibers (i.e. the moduli space parametrizing
them) is a copy of S3. Indeed, each page D∗S2 of the open book S2×S3 = OB(D∗S2, τ2) is a 2-disk
worth of fibers; we moreover have an S1-family of such pages, all of them sharing the boundary
RP 3 (the binding), and such that their Lefschetz fibration all induce the S1-family of pages of
the open book RP 3 = OB(D∗S1, τ2P ). It follows that the leaf space carries the trivial open book
M = OB(D2,1) ∼= S3, whose disk-like page corresponds to the base of the page in S2 × S3, and
whose bindingMB is the S1-family of pages for RP 3. See Figure 16.

Rotating Kepler problem. In [MvK, App. A], we discuss the completely integrable limit case
of the rotating Kepler problem, where µ = 0 and so there is only one primary. The return map
can be studied completely explicitly. Geometrically, this map may be understood via the following
proposition (recall Figure 8):

Proposition 7.7 ( [MvK], Integrable case). In the rotating Kepler problem, the return map f preserves
the annuli fibers of the standard Lefschetz fibration D∗S2 = LF(D∗S1, τ2P ), where it acts as a classical
integrable twist map on regular fibers, and fixes the two (unique) nodal singularities on the singular fibers.

The two fixed points are the north and south poles of the zero section S2, and correspond to
the two periodic collision orbits bouncing on the primary (one for each of the half-planes q3 > 0,
q3 < 0).

The abstract case. We now consider an abstract situation where the previous argument also
holds. Consider a concrete open book decomposition π : M\B → S1 on a contact 5-manifold
(M, ξM ) = OB(P, φ). We assume that P (abstractly) admits the structure of a 4-dimensional Lef-
schetz fibration over D2 whose fibers are surfaces of genus zero and perhaps several boundary
components. We abstractly write P = LF(F, φF ), where φF is the monodromy of the Lefschetz
fibration on P (as we have discussed, necessarily a product of positive Dehn twists on the genus
zero surface F ).

Following [Acu], we will refer to the open book on M as an iterated planar (IP) open book de-
composition, and the contact manifold M as iterated planar. As observed in [AEO, Lemma 4.1],
a contact 5–manifold is iterated planar if and only if it admits an open book decomposition sup-
porting the contact structure, whose binding is planar (i.e. admits a 3-dimensional supporting open
book whose pages have genus zero). In fact, we have B = OB(F, φF ).

We wish to adapt the underlying planar structure to a given Reeb dynamics onM (and hence the
need to work with concrete open books, rather than the abstract version). We then assume that the
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concrete open book on M is adapted to the Reeb dynamics of a fixed contact form αM , i.e. αM is a
Giroux form for the open book (whose dynamics we wish to study). In particular, ωθ := dαM |Pθ
is a symplectic form on Pθ for each θ ∈ S1. Therefore (Pθ, ωθ) is a Liouville filling of the binding
(B, ξB = kerαB), where αB = αM |B , for each θ. We will further assume that we have a concrete
planar open book on the 3-manifold B = OB(F, φF ), which is adapted to the Reeb dynamics of
αB and where φF is a product of positive Dehn twists in the genus zero surface F . We will denote
L = ∂F , which is a link in B (the binding of the open book for B, and Reeb orbits for αB). Given
the above situation, we will say that the Giroux form αM is an IP Giroux form.

This is precisely the situation in the SCR3BP whenever the planar dynamics is strictly con-
vex/dynamically convex, as follows from [HSW, Thm. 1.18], combined with Thm. M above. We
now state the general construction:

Theorem Q ( [M20], IP foliation). There is a foliationM ofM\L, consisting of immersed dαM -holomorphic
curves whose boundary is L. Away from B, its elements are arranged as fibers of Lefschetz fibrations
πθ : Pθ → D2

θ, θ ∈ S1, all of which induce the same fixed concrete open book at B. The πθ are all generic,
i.e. each fiber contains at most a single critical point. We haveM ∼= S3, and it is endowed with the trivial
open book whose θ-page is identified with D2

θ, and its binding isMB
∼= S1, the family of pages of the open

book at B.

The point here is that the above result is in principle non-perturbative; it applies whenever there
is an adapted open book atB. It should be thought of as an S1-parametric version of Wendl’s result
(Thm. J above). We can further endow the moduli space with extra structure:

Theorem R ( [M20], contact and symplectic structures on moduli). The moduli space M carries a
natural contact structure ξM which is supported by the trivial open book on S3 (and hence it is isotopic
to the standard contact structure ξstd by Giroux correspondence). Moreover, the symplectization form on
R ×M associated to any Giroux form αM on M induces a tautological symplectic form onM by leaf-wise
integration, which is naturally the symplectization of a contact form αM for ξM, whose Reeb flow is adapted
to the trivial open book onM.

The holomorphic shadow. We define the holomorphic shadow of the Reeb dynamics of αM on M
to be the Reeb dynamics of the associated contact form αM on S3, provided by Theorem R. The
flow of αM can be viewed as a flow φM ;M

t on M\L which leaves the holomorphic foliation M
invariant (i.e. it maps holomorphic curves to holomorphic curves). It is the “best approximation”
of the Reeb flow of αM with this property, as its generating vector field is obtained by projecting
the original Reeb vector field to the tangent space ofM, via a suitable L2-orthogonal projection. It
may also be viewed as a Reeb flow φS

3;M
t on S3, related to the one on M via a semi-conjugation

M\L M\L

S3 S3

φM;M
t

π πq∗

φS
3;M
t

where π is the projection to the leaf-spaceM ∼= S3. We will now focus on the global properties of
the correspondence αM 7→ αM.

For F a genus zero surface, let Reeb(F, φF ) denote the collection of contact forms whose flow is
adapted to a (fixed) concrete planar open book πB : B\L→ S1 on a given 3-manifold B, of abstract
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form B = OB(F, φF ). Iteratively, we define Reeb(LF(F, φF ), φ) to be the collection of contact
forms with flow adapted to a (fixed) concrete IP open book πM : M\B → S1 on a 5-manifold M , of
abstract form M = OB(LF(F, φF ), φ), whose restriction to the binding B = OB(F, φF ) belongs to
Reeb(F, φF ). We call elements in Reeb(LF(F, φF ), φ) IP contact forms, or IP Giroux forms.

We then have a map

HSJ : Reeb(LF(F, φF ), φ)→ Reeb(D2,1),

given by taking the holomorphic shadow with respect to an auxiliary almost complex structure J
associated to αM . We have the normalization HSJ(αM ) = αstd, where the flow of αstd is the Hopf
flow (we refer to HS−1J (αstd) as the integrable fiber).

Theorem S (Reeb flow lifting theorem). HSJ is surjective.

In other words, for a given J , we may lift any Reeb flow on S3 adapted to the trivial open
book, as the holomorphic shadow of the Reeb flow of an IP Giroux form adapted to any choice of
concrete IP contact 5-fold. The map HSJ is clearly not in general injective, as it forgets dynamical
information in the fibers. While the above lifting procedure is not precisely an extension of the flow,
morally the above theorem says that Reeb dynamics on an IP contact 5-fold is at least as complex
as Reeb dynamics on the standard contact 3-sphere. Somewhat related, we point out that higher-
dimensional Reeb flows encode the complexity of all flows on arbitrary compact manifolds (i.e.
they are universal) [CMPP].

Dynamical Applications. We wish to apply the above results to the SCR3BP. We first introduce
the following general notion. Consider an IP 5-foldM with an IP Reeb dynamics, endowed with an
IP holomorphic foliationM as in Theorem Q. Fix a page P in the IP open book of M , and consider
the associated Poincaré return map f : int(P ) → int(P ). A (spatial) point x ∈ int(P ) is said to
be leaf-wise (or fiber-wise) k-recurrent with respect toM if fk(x) ∈ Mx, whereMx is the leaf ofM
containing x, and k ≥ 1. This means that fk(int(Mx)) ∩ int(Mx) 6= ∅. This is, roughly speaking, a
symplectic version of the notion of leaf-wise intersection introduced by Moser [M78] for the case of
the isotropic foliation of a coisotropic submanifold.

In the integrable case of the rotating Kepler problem, where the mass ratio µ = 0, the holo-
morphic foliation provided by Theorem Q can be obtained by restriction to S∗S3 of the standard
Lefschetz fibration on T ∗S3 (when T ∗S3 is viewed as a quadric in C4; see the discussion on T ∗S2

above). Denote this “integrable” holomorphic foliation on S∗S3 byMint. Since the return map for
µ = 0 preserves fibers, every point is leaf-wise 1-recurrent with respect toMint. If the mass ratio is
sufficiently small, then the leaves of Fint will still be symplectic with respect to dα, where α is the
corresponding perturbed contact form on the unit cotangent bundle S∗S3.

We have the following perturbative result:

Theorem T. In the SCR3BP, for any choice of page P in the open book of Thm. M, for any fixed choice of
k ≥ 1, for sufficiently small µ (depending on k), for energy c below the first critical value H(L1(µ)), along
the bounded components of the Hill region, and for every l ≤ k, there exist infinitely many points in int(P )
which are leaf-wise l-recurrent with respect toMint.

Remark 7.8. The same conclusion holds for arbitrary µ ∈ [0, 1], but sufficiently negative c � 0
(depending on µ and k).

In fact, the conclusion of the Theorem T holds whenever the relevant return map is sufficiently
close to a return map which preserves the leaves of the holomorphic foliation of Theorem Q (i.e.
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Hopf flow

HSJ

μ

Reeb(LF(D*S,τ ),τ )P
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FIGURE 17. An abstract sketch of the convexity range in the SCR3BP (shaded),
for which the holomorphic shadow is well-defined. We should disclaim that the
above is not a plot; the convexity range is not yet fully understood, although it
contains (perhaps strictly) a region which qualitatively looks like the above, cf.
[AFFHvK, AFFvK].

which coincides with its holomorphic shadow on M ). It may then be interpreted as a symplectic
version of the main theorem in [M78], for two-dimensional symplectic leaves. The advantage of
considering the integrable foliation (in terms of applications) is that it can be written down explic-
itly in complex coordinates.
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[MNW] Massot, Patrick; Niederkrüger, Klaus; Wendl, Chris. Weak and strong fillability of higher dimensional contact
manifolds. Invent. Math. 192 (2013), no. 2, 287–373.

[M91] McDuff, Dusa. Symplectic manifolds with contact type boundaries. Invent. Math. 103 (1991), no. 3, 651–671.
[MS] McDuff, Dusa; Salamon, Dietmar. Introduction to symplectic topology. Third edition. Oxford Graduate Texts in Math-

ematics. Oxford University Press, Oxford, 2017. xi+623 pp. ISBN: 978-0-19-879490-5; 978-0-19-879489-9
[M69] McGehee, Richard Paul. Some homoclinic orbits for the restricted three-body problem. Thesis (Ph.D.)–The University

of Wisconsin - Madison. ProQuest LLC, Ann Arbor, MI, 1969. 63 pp.
[M68] Milnor, John. Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61 Princeton University

Press, Princeton, N.J.; University of Tokyo Press, Tokyo 1968 iii+122 pp.
[MvK] Agustin Moreno, Otto van Koert. Global hypersurfaces of section in the spatial restricted three-body problem. To

Appear.
[MvK] Agustin Moreno, Otto van Koert. A generalized Poincaré-Birkhoff theorem. To Appear.
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