<div dir="ltr"><div dir="ltr"><div dir="ltr">Hola a todas y todos,<br><div dir="ltr"><div><br></div><div dir="ltr">Este <b>Viernes 22 de Noviembre</b> a las <b>14:30</b> en el sal√≥n <span>de</span> <span><span><span><span><span><span><span><span><span><span><span><span><span><span class="gmail-il">seminarios</span></span></span></span></span></span></span></span></span></span></span></span></span></span> del <b>IMERL</b> nos va hablar <b>Bruno Santiago</b> sobre <b>Centralizadores de campos de vectores</b>.<br><br></div><div>Saludos,<br><br></div>Pablo</div><br><br><br>----------<br><b>Title:</b> The centraliser of a vector field: criteria of triviality, applications and questions<div><div><div dir="auto"><div dir="auto"><b><br>Abstract:</b>
 <br><br>A dynamical system can present symmetries in many different ways. 
Perhaps the simplest, and the most rigid, example of this, <span style="font-family:sans-serif">in
 some sense, is to consider the flow of a vector field and look for 
other vector fields which commute with it. This object is called the 
centraliser of the given vector field. <br><br>If Y belongs to the centraliser 
of X then their flows patched together give an action of R2 into the 
manifold, whose orbits can have 0, 1 or 2 dimensions. The latter case 
indicates the presence of non-trivial symmetries. Inspired by the 
folklore fact that if Y belongs to centraliser of an Anosov vector field
 X then Y is a constant multiple of X, we shall discuss criteria to 
ensure that a vector field is sufficiently chaotic to have no 
symmetries. <br><br>I will focus the exposition in many interesting questions 
still open on the subject.</span> </div> </div></div></div></div></div></div>